• Title/Summary/Keyword: Ultimate tensile strength

Search Result 496, Processing Time 0.025 seconds

Design and Evaluation of Aluminum Casting Alloys for Thermal Managing Application (방열소재용 알루미늄 주조합금 설계 및 특성평가)

  • Shin, Je-Sik;Kim, Ki-Tae;Ko, Se-Hyun;An, Dong-Jin;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.22-31
    • /
    • 2013
  • In order to develop an aluminum alloy, that can combine high thermal conductivity and good castability and anodizability, aluminum alloys with low Si content, such as Al-(0.5~1.5)Mg-1Fe-0.5Si and Al-(1.0~1.5)Si-1Fe-1Zn, were designed. The developed aluminum alloys exhibited 170~190% thermal conductivity (160~180 W/mK), 60~85% fluidity, and equal or higher ultimate tensile strength compared with those of the ADC12 alloy. In each developed alloy system, the thermal conductivity decreased and the strength increased with the increment of Mg and Si, which are the significant alloying elements. The fluidity was in reverse proportion to the Mg content and in proportion to the Si content. The Al-(0.5~1.5)Mg-1Fe-0.5Si alloys exhibited better fluidity in thick-wall castings, while the Al-(1.0~1.5)Si-1Fe-1Zn alloys were better in thin-wall castability due to their lower surface energies. The fluidity behavior was complexly affected by the heat release for the solidification, viscosity, solidification range, and the type, quantity, and formation juncture of the main secondary phase.

Structural performance of ribbed ferrocement plates reinforced with composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.;Refat, Hala M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.567-594
    • /
    • 2016
  • The main objective of the current research is estimating the flexural behavior of ferrocement Ribbed Plates reinforced with composite material. Experimental investigation was carried out on fifteen plates; their dimensions were kept constant at 1200 mm in length, 600 mm width and 100 mm thick but with different volume fraction of steel reinforcement and number of ribs. Test specimens were tested until failure under three line loadings with simply supported conditions over a span of 1100 mm. Cracking patterns, tensile and compressive strains, deformation characteristics, ductility ratio, and energy absorption properties were observed and measured at all stages of loadings. Experimental results were compared to analytical models using ANSYS 10 program. Parametric study is presented to look at the variables that can mainly affect the mechanical behaviors of the model such as the change of plate length. The results showed that the ultimate strength, ductility ratio and energy absorption properties of the proposed ribbed plates are affected by the volume fraction and the type of reinforcement, and also proved the effectiveness of expanded metal mesh and woven steel mesh in reinforcing the ribbed ferrocement plates. In addition, the developed ribbed ferrocement plates have high strength, ductility ratio and energy absorption properties and are lighter in weight compared to the conventional RC ribbed plates, which could be useful for developed and developing countries alike. The Finite Element (FE) simulations gave good results comparing with the experimental results.

Design of LB-DECK Based on Performance Evaluation (성능 평가에 근거한 LB-DECK의 설계)

  • Cho, Gyu Dae;Lho, Byeong Cheol;Cho, Hyun Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.99-106
    • /
    • 2011
  • This study performed research for improvement on basic concept of PBD applying suitable design method before and after LB-DECK composition. According to study, in this case, before composition, it can reduce minuteness cracks by increasing bending tensile strength utilizing polymer concrete, can expect sensuous effect, improve durability as to low permeability, and was evaluated that can reduce covering depth according as it. Also, because LB-DECK baseplate that apply the empirical design method composite is superior load resistance ability than general baseplate, safety is increased, it is expected to secure constructibility and economic performance at the same time because reinforcement arrangement method and reinforcement amount are fixed even if span effective span is increased at ultimate strength design method application.

Mechanical performances of concrete beams with hybrid usage of steel and FRP tension reinforcement

  • Bui, Linh V.H.;Stitmannaithum, Boonchai;Ueda, Tamon
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.391-407
    • /
    • 2017
  • Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and especially in corrosive environments to improve the durability of concrete structures. However, FRPs have a low modulus of elasticity and a linear elastic behavior up to rupture, thus reinforced concrete (RC) components with such materials would exhibit a less ductility in comparison with steel reinforcement at the similar members. There were several studies showed the behavior of concrete beams with the hybrid combination of steel and FRP longitudinal reinforcement by adopting the experimental and numerical programs. The current study presents a numerical and analytical investigation based on the data of previous researches. Three-dimensional (3D) finite element (FE) models of beams by using ANSYS are built and investigated. In addition, this study also discusses on the design methods for hybrid FRP-steel beams in terms of ultimate moment capacity, load-deflection response, crack width, and ductility. The effects of the reinforcement ratio, concrete compressive strength, arrangement of reinforcement, and the length of FRP bars on the mechanical performance of hybrid beams are considered as a parametric study by means of FE method. The results obtained from this study are compared and verified with the experimental and numerical data of the literature. This study provides insight into the mechanical performances of hybrid FRP-steel RC beams, builds the reliable FE models which can be used to predict the structural behavior of hybrid RC beams, offers a rational design method together with an useful database to evaluate the ductility for concrete beams with the combination of FRP and steel reinforcement, and motivates the further development in the future research by applying parametric study.

Reliable experimental data as a key factor for design of mechanical structures

  • Brnic, Josip;Krscanski, Sanjin;Brcic, Marino;Geng, Lin;Niu, Jitai;Ding, Biao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.245-256
    • /
    • 2019
  • The experimentally determined mechanical behavior of the material under the prescribed service conditions is the basis of advanced engineering optimum design. To allow experimental data on the behavior of the material considered, uniaxial stress tests were made. The aforementioned tests have enabled the determination of mechanical properties of material at different temperatures, then, the material's resistance to creep at various temperatures and stress levels, and finally, insight into the uniaxial high cyclic fatigue of the material under different applied stresses for prescribed stress ratio. Based on fatigue tests, using modified staircase method, fatigue limit was determined. All these data contributes the reliability of the use of material in mechanical structures. Data representing mechanical properties are shown in the form of engineering stress-strain diagrams; creep behavior is displayed in the form of creep curves while fatigue of the material is presented in the form of S-N (maximum applied stress versus number of the cycles to failure) curve. Material under consideration was 18CrNi8 (1.5920) steel. Ultimate tensile strength and yield strength at room temperature and at temperature of $600^{\circ}C$: [${\sigma}_{m,20/600}=(613/156)MPa$; ${\sigma}_{0.2,20/600}=(458/141)MPa$], as well as endurance (fatigue) limit at room temperature and stress ratio of R = -1 : (${\sigma}_{f,20,R=-1}=285.1MPa$).

Study on the Microstructure and Mechanical Properties of High Volume Fraction TiB2-Al1050 Metal Matrix Composites (고체적률 TiB2-Al1050 금속복합재료의 미세조직 및 기계적 특성 연구)

  • Ko, Seongmin;Park, Hyeonjae;Lee, Yeong-Hwan;Shin, Sangmin;Lee, Donghyun;Jo, Ilguk;Lee, Sang-Bok;Lee, Sang-Kwan;Cho, Seungchan
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, Al1050 composites reinforced with uniformly dispersed, high volume fraction $TiB_2$ particles were fabricated by liquid pressing process and analyzed to microstructure, mechanical properties. Hardness, ultimate tensile strength and compressive yield strength of the 56 vol.% $TiB_2$-Al1050 composite increased to 10, 4.5 and 9.8 times, respectively, compared with those of the Al1050 due to dispersion hardening effect of uniformly dispersed $TiB_2$ in the Al matrix.

Shear Strengthening Effect by Deviator Location in Externally Post-tensioning Reinforcement (외적 포스트텐셔닝 보강에서 데비에이터의 위치에 따른 전단보강효과)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.3-10
    • /
    • 2018
  • This paper described the shear strengthening effect by deviator location in pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. Three reinforced concrete beams as control beam and eight post-tensioned beams using external steel rods were tested to fail in shear. The externally post-tensioning material was a steel rod of 22 mm diameter, and it had a 655 MPa yield strength and an 805 MPa tensile strength. Specimens depend on multiple variables, such as the number of deviators, location of deviator, and load pattern. The pre-damaged loads up to about 2/3 of ultimate shear capacities were applied to specimens using displacement control and the diagonal shear crack just occurred at these loading levels. And then, the post-tensioning up to when a strain of steel rod reaches about $2000{\mu}{\varepsilon}$ was continuously applied to beam. A displacement control was changed to a load control during post-tensioning. The post-tensioning resulted in increase of load-carrying capacity and restoration of existing deflection. Also, it prevented the existing diagonal cracks from excessively growing. Two deviators effectively improved the load capacity when compared with in case of test which one deviator at mid-span installed. When deviators were located near region which the diagonal crack occurred on, the strengthening impact by post-tensioning was greater.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

A Study on the Estimation for the Compressive Strength of Member According to the Knot Types (옹이 형태별 소재의 압축강도 예측에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.170-177
    • /
    • 2010
  • Finite element numerical analysis was conducted with using the knot data which has a strong influence on the prediction of capacity for the structural wood member. Wood is a orthotropic property unlike other structural materials, so orthotropic property was applied. Knot was modelled as a cylinder shape, cone shape, and cubic shape. Compressive test was carried out to investigate the failure types and to calculate ultimate strengths for the wood members. Numerical model which can reflect the member size, number of knot, location of knot, size of knot was created and analyzed. By the numerical analysis using the ultimate compressive strength, numerical stress distribution types of each specimen was compared to real failure types for the test specimen. Cylinder shape modelling might be most reasonable, according to the necessary time for the analysis, the difficulty of element meshing, and the similarity of stress transfer around knot. Moreover, according to the stress and deformation distribution for the numerical analysis, failures or cracks of real specimen were developed in the vicinity of stress concentrated section and most transformed section. Based on the those results, numerical analysis could be utilized as a useful method to analyze the performance of bending member and tensile member, if only orthotropic property and knot modelling were properly applied.

Suggestion, Design, and Evaluation of a New Modified Double Tee Slabs (새로운 개량 더블티 슬래브의 제안, 설계 및 평가)

  • Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.809-820
    • /
    • 2008
  • A new modified full scale double tee slabs with the length of nib plate - 1,500 mm were suggested, designed, and experimentally evaluated up to the loading of flexural failure. This slabs were composed of the tee section which was same to original PCI double tee and the plate section which was modified in a new shape, and the prestressing force was applied at the bottom of tee section only. This specimens were made from the domestic precast factory. The safety and serviceability of the modified nib plate with the dapped ends were evaluated up to the ultimate flexural strength of tee section. As the experimental loading increased, the flexural crackings developed first in the bottom of the slab and they changed to the increased flexural shear and inclined shear crackings in the nib and dapped portion of the double tees. The suggested modified double tee slabs failed in ductile above the design loading with many evenly distributed flexural crackings. The thickness of nib plate - 250 mm does not show any cracking under the service loading and show several minor flexural cracking up to the ultimate state of tee portion. The proposed specimens were satisfied with the strength and ductility requirements in the design code provisions in the tests. Additional experimental tests are required to reduce the depth and tensile reinforcement of nib plate concrete for the practical use of this system effectively.