• Title/Summary/Keyword: Ultimate tensile strength

Search Result 495, Processing Time 0.031 seconds

Investigation on Resistance to Hydrogen Embrittlement of High Nitrogen Austenitic Steels for Hydrogen Pipe by the Disc Pressure Test and the Tensile Test on Hydrogen Pre-charged Specimens (디스크 시험 및 수소처리 인장시험에 의한 수소배관용 고질소 스테인리스강의 내수소취성 평가 연구)

  • Dong-won, Shin;Min-kyung, Lee;Jeong Hwan, Kim;Ho-seong, Seo;Jae-hun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.16-23
    • /
    • 2022
  • In this study, characteristics of effect on hydrogen gas was investigated to hydrogen embrittlement by disk and tensile tests. The developed and commercial alloy was fabricated to a plate material made from an alloy ingot. The prepared materials were processed in the form of a disk to measure rupture pressure by hydrogen and helium gas at a rate of 0.1 to 1,000 bar/min. In the hydrogen pre-charged tensile test, a specimen was hydrogenated using an anode charging method, and the yield strength, ultimate tensile strength, elongation, and reduction in area rate were carried by a strain rate test. Also, the microstructure was observed to the fracture surface of the tensile test specimen. As a result, the developed materials satisfied endurable hydrogen embrittlement, and the fractured surface showed a brittleness fracture surface with a depth of several ㎛, but dimple due to ductile fracture could be observed.

Study on the optimization of additive manufacturing process parameters to fabricate high density STS316L alloy and its tensile properties (고밀도 STS316L 합금 적층 성형체의 제조공정 최적화 및 인장 특성 연구)

  • Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.288-293
    • /
    • 2023
  • To optimize the process parameters of laser powder bed fusion process to fabricate the high density STS316L alloy, the effect of laser power, scanning speed and hatching distance on the relative density was studied. Tensile properties of additively manufactured STS316L alloy using optimized parameters was also evaluated according to the build direction. As a result of additive manufacturing process under the energy density of 55.6 J/mm3, 83.3 J/mm3 and 111.1 J/mm3, high density STS316L specimens was suitably fabricated when the energy density, power and scan speed were 83.3 J/mm3, 225 W and 1000 mm/s, respectively. The yield strength, ultimate tensile strength, and elongation of STS316L specimens in direction perpendicular to the build direction, show the most competitive values. Anisotropic shape of the pores and the lack of fusion defects probably caused strain localization which result in deterioration of tensile properties.

Reliability Analysis of Ship′s Longitrdinal Strength for the Rational Ship Structural Design (선박구조설계 합리화를 위한 선체 종강도의 신뢰성 해석)

  • Oi-H. Kim;Byung-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The application of the reliability analysis is investigated as a probabilistic approach to the assessment of ship's structural strength and to the establishment of design format for longitudinal strength. Reliability analyses are carried out for 34 ships of tankers and bulk carriers built in HHI for some failure modes such as tensile yielding, compressive buckling and ultimate strength of hull girder. The safety assessment of each ship, the calculation of sensitivity factors and the derivation of target reliability index are performed. As results. the difference of reliability indices among ships is great for all modes. To provide more uniform levels of safety the establishment of new strength criteria using partial safety factors is performed. The partial safety factors for the design format are obtained according to the AFOSM method and the reliability-conditioned(RC) method. Finally, a design format using partial safety factors has been proposed. We could find out that new strength criteria can produce consistent reliability indices which are close to the target value.

  • PDF

Flexural Behaviors of Precast Prestressed Rectangular and Inverted-tee Concrete Beams for Buildings

  • Yu, Sung-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • Flexural behaviors of the two typical precast beam sections (inverted tee and rectangular) for buildings were investigated and compared. The height of web in the inverted tee beam was generally less than half of beam depth to be adapted to that of the nib in the ends of double-tee where the total building height limited considerably. The inverted-tee beams were designed for a parking live load - 500kgf/$m^2$ and a market - 1,200kgf/$m^2$ from the currently used typical shape of a domestic building site in Korea. The area and bottom dimension of rectangular beams were the same as those of inverted tee beams. These woo beams were also reinforced with a similar strength. following results were obtained from the studies above; 1) the rectangular beam is simpler in production, transportation, and erection, and more economic than the inverted tee beam in the construction test for these two beams with a same dimension and a similar strength, 2) all of the beams considered in the tests were generally failed in values close to those of the strength requirements in ACI Provisions. The ratios of test result to calculated value are averaged to 1.04. One rectangular and one inverted tee beams failed in a value only 2-3% larger than the estimated volue of the Strength Design Methool the results of the Strain Compatibility Method wire slightly more accurate than those of the Strength Design Method, 4) the maximum deflections of all of the beams under the full service loads were less than those of the allowable limit in ACI Code Provisions. The rectangular beams experienced more deflection then inverted tee in the same loading condition and failed with more deflection, and 5) the rectangular and inverted tee beams showed good performances under the condition of service and ultimate loads. However, one inverted tee beams with fm span developed an initial flexural crackings under 88% of the full service load even though they designed to satisfy the ACI tensile stress limit provisions.

  • PDF

The Evaluation of Mechanical Properties of Ultra High Performance Concrete with Using Steel Fiber of Wave Type (물결형 강섬유를 이용한 초고성능 콘크리트의 역학적 특성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.353-356
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to steel fiber type in UHPC. The results is showing that the steel fiber type have remarkable influence flexural strength Addition to it is showing that steel fiber type made little difference in the first cracking strength but considerable gap in the ultimate flexural strength to use the steel fiber of wave type.

  • PDF

The Evaluation of Flexural Performance in UHPC(Ultra High Performance Concrete) according to Placement Methods (타설방법에 따른 초고성능 콘크리트의 휨성능 평가)

  • Ryu, Gum-Sung;Kang, Su-Tae;Park, Jung-Jun;Ahn, Ki-Hong;Koh, Kyung-Taek;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.357-360
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to placement method in UHPC. The results is showing that the placement methods have remarkable influence flexural strength Addition to it is showing that the placement methods made little difference in the first cracking strength but considerable gap up to 2 or 3 times in the ultimate flexural strength.

  • PDF

Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS. RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (${\alpha}$=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (${\alpha}$=.05). The roughness and elemental proportion were evaluated by Kruskal-Wallis test and Mann-Whitney U test. RESULTS. Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION. An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required.

An Experimental Study on the Bonding Characteristic of Steel Tubular Joint Connection filled with Fiber Reinforced High Performance Cementeous Grout (섬유보강 고성능시멘트계 그라우트가 적용된 강관 연결부의 부착특성에 대한 실험적 연구)

  • Oh, Hong-Seob;Seo, Gyo;Kim, Sang-Hyeon;Ko, Sang-Jin;Lee, Hyeon-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.21-29
    • /
    • 2014
  • This paper deals with the bonding characteristic of grouted joint connections of monopile support structures for offshore wind power facilities. For the integration of pile connection of wind power supporting structure, fiber reinforced high performance cementeous grout was developed and the ultimate compressive strength of it is 125MPa and the direct tensile strength is 7.5 MPa at 7 days. To assess the bond strength of grout filled in pile connection, small scaled direct bond tests under axially loaded was performed and analyzed according the existing guidelines. The fiber volume fraction (0%, 0.5% and 0.9%), aspect ratio of fiber (60 and 80) and the ratio of height to spacing of shear key (0.013 and 0.056) were adopted as the experimental variables. From the test results, the maximum bond strength among the all specimens was 30.8MPa and the bond strength of grouted connection was affected by the ratio of height to spacing of shear key than the fiber volume fraction.

New constitutive models for non linear analysis of high strength fibrous reinforced concrete slabs

  • Yaseen, Ahmed Asaad;Abdul-Razzak, Ayad A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.121-131
    • /
    • 2022
  • The main goal of this study is to prepare a program for analyzing High Strength Steel Fibrous Reinforced Concrete (HSSFRC) slabs and predict the response and strength of the slab instead of preparing a prototype and testing it in the laboratory. For this purpose, new equations are proposed to represent the material properties of High Strength Steel Fibrous Reinforced Concrete. The proposed equations obtained from performing regression analysis on many experimental results using statistical programs. The finite element method is adopted for non-linear analysis of the slabs. The eight-node "Serendipity element" (3 DoF) is chosen to represent the concrete. The layered approach is adopted for concrete elements and the steel reinforcement is represented by a smeared layer. The compression properties of the concrete are modeled by a work hardening plasticity approach and the yield condition is determined depending on the first two stress invariants. A tensile strength criterion is adopted in order to estimate the cracks propagation. many experimental results for testing slabs are compared with the numerical results of the present study and a good agreement is achieved regarding load-deflection curves and crack pattern. The response of the load deflection curve is slightly stiff at the beginning because the creep effect is not considered in this study and for assuming perfect bond between the steel reinforcement and the concrete, however, a great agreement is achieved between the ultimate load from the present study and experimental results. For the models of the tension stiffening and cracked shear modulus, the value of Bg and Bt (Where Bg and Bt are the curvature factor for the cracked shear modulus and tension stiffening models respectively) equal to 0.005 give good results compared with experimental result.

Characterization of Ductile Metal-FRP Laminated Composites for Strengthening of Structures: Part-II Tensile Behavior (사회기반설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-II휨 거동)

  • Park, Cheol-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the flexural fracture test with various experimental variables including the number, the angle and the combination of FRP laminates. From the aluminum-FRP composite tests no great increase in flexural strength and flexural toughness were observed. However, flexural toughness of steel-FRP laminate composite was increased so that its behavior can be considered in the retrofit design. In addition, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions.