• 제목/요약/키워드: Ultimate tensile strength

검색결과 494건 처리시간 0.033초

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

Effect of soldering techniques and gapdistance on tensile strength of soldered Ni-Cr alloy joint

  • Lee, Sang-Yeob;Lee, Jong-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • 제2권4호
    • /
    • pp.117-121
    • /
    • 2010
  • PURPOSE. The present study was intended to evaluate the effect of soldering techniques with infrared ray and gas torch under different gap distances (0.3 mm and 0.5 mm) on the tensile strength and surface porosity formation in Ni-Cr base metal alloy. MATERIALS AND METHODS. Thirty five dumbbell shaped Ni-Cr alloy specimens were prepared and assigned to 5 groups according to the soldering method and the gap distance. For the soldering methods, gas torch (G group) and infrared ray (IR group) were compared and each group was subdivided by corresponding gap distance (0.3 mm: G3 and IR3, 0.5 mm: G5, IR5). Specimens of the experimental groups were sectioned in the middle with a diamond disk and embedded in solder blocks according to the predetermined distance. As a control group, 7 specimens were prepared without sectioning or soldering. After the soldering procedure, a tensile strength test was performed using universal testing machine at a crosshead speed 1 mm/min. The proportions of porosity on the fractured surface were calculated on the images acquired through the scanning electronic microscope. RESULTS. Every specimen of G3, G5, IR3 and IR5 was fractured on the solder joint area. However, there was no significant difference between the test groups (P > .05). There was a negative correlation between porosity formation and tensile strength in all the specimens in the test groups (P < .05). CONCLUSION. There was no significant difference in ultimate tensile strength of joints and porosity formations between the gas-oxygen torch soldering and infrared ray soldering technique or between the gap distance of 0.3 mm and 0.5 mm.

Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구 (A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate)

  • 김인호;이길영;주정민;박경태;천병선
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

Studying the influences of mono-vacancy defect and strain rate on the unusual tensile behavior of phosphorene NTs

  • Hooman Esfandyari;AliReza Setoodeh;Hamed Farahmand;Hamed Badjian;Greg Wheatley
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.59-65
    • /
    • 2023
  • In this present article, the mechanical behavior of single-walled black phosphorene nanotubes (SW-αPNTs) is simulated using molecular dynamics (MD). The proposed model is subjected to the axial loading and the effects of morphological parameters, such as the mono-vacancy defect and strain rate on the tensile behavior of the zigzag and armchair SW-αPNTs are studied as a pioneering work. In order to assess the accuracy of the MD simulations, the stress-strain response of the current MD model is successfully verified with the efficient quantum mechanical approach of the density functional theory (DFT). Along with reproducing the DFT results, the accurate MD simulations successfully anticipate a significant variation in the stress-strain curve of the zigzag SW-αPNTs, namely the knick point. Predicting such mechanical behavior of SW-αPNTs may be an important design factor for lithium-ion batteries, supercapacitors, and energy storage devices. The simulations show that the ultimate stress is increased by increasing the diameter of the pristine SW-αPNTs. The trend is identical for the ultimate strain and stress-strain slope as the diameter of the pristine zigzag SW-αPNTs enlarges. The obtained results denote that by increasing the strain rate, the ultimate stress/ultimate strain are respectively increased/declined. The stress-strain slope keeps increasing as the strain rate grows. It is worth noting that the existence of mono-atomic vacancy defects in the (12,0) zigzag and (0,10) armchair SW-αPNT structures leads to a drop in the tensile strength by amounts of 11.1% and 12.5%, respectively. Also, the ultimate strain is considerably altered by mono-atomic vacancy defects.

용량별 인장력 측정용 턴버클의 해석 및 실험 (Analysis and Test for Turn-buckle of Capacity for Measuring Tensile Force)

  • 신경재;이수헌;이희두
    • 한국강구조학회 논문집
    • /
    • 제23권6호
    • /
    • pp.715-724
    • /
    • 2011
  • 인장구조 시스템에서 구조물의 하중을 지지하는 인장재 사이에 삽입되어 인장력을 조절하는 장치가 턴버클이다. 인장재가 인장구조에서 중요한 부재임에도 불구하고, 현재 인장재에 발생하는 인장력을 경제적이고 간단하게 측정하기 위한 방법이 제안되지 못하였다. 그리하여 인장구조시스템에 작용하는 인장력을 측정하기 위하여 인장력 측정장치를 개발하였다. 본 논문에서는 이론해석과 유한요소해석을 바탕으로 100kN, 200kN, 300kN급 측정한계하중을 가지는 턴버클을 실험하였다. 그 결과 이론적 해석, 유한요소해석, 실험결과는 대체로 일치하는 것으로 나타났다. 또한 유한요소해석에 의한 측정용 턴버클의 극한강도를 조사해보면, 측정한계하중의 5배 이상의 과하중에서도 충분한 안전성을 확보하고 있음을 확인할 수 있었다.

도시철도 차량 차륜재의 다축 피로강도 평가 (Evaluation of Multiaxial Fatigue Strength of a Urban Railway Wheel Steel)

  • 안종곤;유인동;권석진;손영진;김호경
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.621-629
    • /
    • 2011
  • Uniaxial and biaxial torsional fatigue tests were conducted on the samples extracted from urban railway wheel steel. Ultimate and yield strengths of the steel were 1027.7 MPa and 626 MPa, respectively. The uniaxial fatigue limit was 422.5 MPa, corresponding 67% of the ultimate tensile strength. The ratio of ${\tau}_e/{\sigma}_e$ was 0.63. Fatigue strength coefficient and exponent were 1319.5 MPa and 0.339, respectively. Maximum principal and equivalent strain were found to be adequate parameter to predict fatigue lifetime of the steel under multiaixal fatigue condition.

  • PDF

Experimental and theoretical research on the compression performance of CFRP sheet confined GFRP short pole

  • Chen, Li;Zhao, Qilin;Jiang, Kebin
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.215-231
    • /
    • 2011
  • The axial compressive strength of unidirectional FRP is generally quite lower than its axial tensile strength. This fact decreases the advantages of FRP as main load bearing member in engineering structure. In order to restrain the lateral expansion and splitting of GFRP, and accordingly heighten its axial compressive bearing capacity, a project that to confine GFRP pole with surrounding CFRP sheet is suggested in the present study. The Experiment on the CFRP sheet confined GFRP poles showed that a combined structure of high bearing capacity was attained. Basing on the experiment research a theoretical iterative calculation approach is suggested to predict the ultimate axial compressive stress of the combined structure, and the predicted results agree well with the experimental results. Then the influences of geometrical parameters on the ultimate axial compressive stress of the combined structure are also analyzed basing on this approach.

미소 기전 시스템용 니켈 박막의 기계적 물성 측정 (Measurement of Mechanical Properties of Electroplated Nickel Thin Film for MEMS Application)

  • 백동천;박태상;이순복;이낙규;최태훈;나경환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1321-1325
    • /
    • 2003
  • Nickel thin film is one of the most important materials used in micromachined structure. To measure the mechanical properties of electroplated nickel thin film, two techniques are adopted and compared quantitatively with. One is nano-indentation test to measure the elastic modulus. The other is tensile test to measure not only elastic modulus but also yield strength and plastic deformation, ultimate strength. To perform the tensile test, the test apparatus was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

가스분무 공정에 의한 고강도 과공정 AI-Si 합금 분말의 제조 및 특성연구 II. 압출재 제조 및 기계적 특성 (Fabrication and Properties of High Strength Hypereutectic AI-Si Powders by a Gas Atomization Process II. Extrusion and Mechanical Properties)

  • 김용진;김진천
    • 한국분말재료학회지
    • /
    • 제15권2호
    • /
    • pp.142-147
    • /
    • 2008
  • The hypereutectic Al-20 wt%Si powders including some amount of Cu, Fe, Mg, Mn were prepared by a gas atomization process. In order to get highly densified Al-Si bulk specimens, the as-atomized and sieved powders were extruded at $500^{\circ}C$, Microstructure and tensile properties of the extruded Al-Si alloys were investigated in this study. Relative density of the extruded samples was over 98%. Ultimate tensile strength (UTS) in stress-strain curves of the extruded powders increased after T6 heat treatments. Elongation of the samples was also increased from 1.4% to 3.2%. The fracture surfaces of the tested pieces showed a fine microstructure and the average grain size was about $1{\mu}m$.

산업부산물을 활용한 고강도 경량콘크리트 보의 전단강도에 대한실험 연구 (Experimental Studies on Shear Strength of High-Strength Lightweight Concrete Beam using the Industrial by-products)

  • 이승조;박정민;김화중
    • 콘크리트학회논문집
    • /
    • 제18권5호
    • /
    • pp.621-630
    • /
    • 2006
  • 산업부산물을 활용한 고강도 경량 콘크리트 보의 역학적 거동 구명과 함께 경량 콘크리트 보의 이론식을 바탕으로 합리적인 전단강도식을 제안하였다. 보는 경량 골재를 사용한 고강도 경량 콘크리트 보(L) 8개와 일반 골재를 사용한 고강도콘크리트 보(H) 4개의 실험체를 제작하였다. 그리고 전단스팬비(a/b=1.5, 2.5, 3.5, 4.5), 인장철근비(${\rho}$=0.57, 1.0, 1.59, 2.3%), 콘크리트의 압축강도(35.4, 65.3MPa)를 주요 변수로 설정하여 실험하였다. 이로부터 보에 대한 하중-처짐관계 및 변형률 분포, 파괴성상, 최대내력 등에 대하여 측정하였다. 또한 보의 전단강도식의 제안을 위하여 사인장 균열 강도와 극한전단강도로 세분화하여 기존 제안식과 규준식에 적용시켜 상호 비교 분석을 하였다. $V_{cr}$에 있어서는 a/b=2.5 이상에서는 ACI 규준식과 Zsutty제안식에서 감소하는 결과였지만, Mathey의 제안식에서는 약간의 상승 경향을 보였다. 또한, ${\rho},\;f_c$의 증가에 따라 $V_{cr,\exp}/V_{cr,cal}$은 과대평가의 경향이 나타났다. 한편, $V_{u, \exp}/V_{u,cal}$에서는 통계적인 방법으로 유도된 Zsutty의 제안식이 실험결과와의 일치성에서 좋은 결과를 보였다. 이 식으로부터 유도 수정된 전단강도에 대한 제안식은 $V_{cr},\;V_u$에서 합리적으로 예측할 수 있음을 알 수 있었다. 따라서 본 연구에서 제안된 전단강도 식은 경량 콘크리트의 전단스팬비, 인장철근비, 콘크리트 압축강도의 변화에 따른 전단내력을 합리적으로 평가하는데 유용하게 활용될 수 있을 것으로 사료된다.