• 제목/요약/키워드: Ultimate moment capacity

검색결과 162건 처리시간 0.024초

An investigation on the bearing capacity of steel girder-concrete abutment joints

  • Liang, Chen;Liu, Yuqing;Zhao, Changjun;Lei, Bo;Wu, Jieliang
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.319-336
    • /
    • 2021
  • To achieve a rational detail of the girder-abutment joints in composite integral bridges, and validate the performance of the joints with perfobond connectors, this paper proposes two innovative types of I-shaped steel girder-concrete abutment joints with perfobond connectors intended for the most of bearing capacity and the convenience of concrete pouring. The major difference between the two joints is the presence of the top flange inside the abutments. Two scaled models were investigated with tests and finite element method, and the damage mechanism was revealed. Results show that the joints meet design requirements no matter the top flange exists or not. Compared to the joint without top flange, the initial stiffness of the one with top flange is higher by 7%, and the strength is higher by 50%. The moment decreases linearly in both types of the joints. At design loads, perfobond connectors take about 70% and 50% of the external moment with and without top flange respectively, while at ultimate loads, perfobond connectors take 53% and 26% of the external moment respectively. The ultimate strengths of the reduced sections are suggested to be taken as the bending strengths of the joints.

Flexural performance of prestressed UHPC beams with different prestressing degrees and levels

  • Zongcai Deng;Qian Li;Rabin Tuladhar;Feng Shi
    • Computers and Concrete
    • /
    • 제34권4호
    • /
    • pp.379-391
    • /
    • 2024
  • The ultra-high performance concrete (UHPC) mixed with hybrid fibers has excellent mechanical properties and durability, and the hybrid fibers have a certain impact on the bearing capacity, deformation capacity, and crack propagation of beams. Many scholars have conducted a series of studies on the bending performance of prestressed UHPC beams, but there are few studies on prestressed UHPC beams mixed with hybrid fibers. In this study, five bonded post-tensioned partially prestressed UHPC beams mixed with steel fibers and macro-polyolefin fibers were poured and subjected to four-points symmetric loading bending tests. The effects of different prestressing degrees and prestressing levels on the load-deflection curves, crack propagation, failure modes and ultimate bearing capacity of beams were discussed. The results showed that flexural failure occurred in the prestressed UHPC beams with hybrid fibers, and the integrity of specimens was good. When the prestressing degree was the same, the higher the prestressing level, the better the crack resistance capacity of UHPC beams; When the prestressing level was 90%, increasing the prestressing degree was beneficial to improve the crack resistance and ultimate bearing capacity of UHPC beams. When the prestressing degree increased from 0.41 to 0.59, the cracking load and ultimate load increased by 66.0% and 41.4%, respectively, but the ductility decreased by 61.2%. Based on the plane section assumption and considering the bridging effect of short fibers, the cracking moment and ultimate bearing moment were calculated, with good agreement between the test and calculated values.

Experimental and numerical investigation on RC moment-Resisting frames retrofitted with NSD yielding dampers

  • Esfandiari, J.;Zangeneh, E.;Esfandiari, S.
    • Advances in concrete construction
    • /
    • 제13권4호
    • /
    • pp.339-347
    • /
    • 2022
  • Retrofitting in reinforced concrete structures has been one of the most important research topics in recent years. There are several methods for retrofitting RC moment-resisting frames. the most important of which is the use of steel bracing systems with yielding dampers. With a proper design of yielding dampers, the stiffness of RC frame systems can be increased to the required extent so that the ductility of the structure is not significantly reduced. In the present study, two experimental samples of a one-third scale RC moment-resisting frame were loaded in the laboratory. In these experiments, the retrofitting effect of RC frames was investigated using Non-uniform Slit Dampers (NSDs). Based on the experimental results of the samples, seismic parameters, i.e., stiffness, ductility, ultimate strength, strength reduction coefficient, and energy dissipation capacity, were compared. The results demonstrated that the retrofitted frame had very significant growth in terms of stiffness, ultimate strength, and energy dissipation capacity. Although the strength reduction factor and ductility decreased in the retrofitted sample. In general, the behavior of the frame with NSDs was evaluated better than the bare frame.

철근콘크리트 연속보의 휨모멘트 재분배에 관한 해석적 연구 (Analytical Study on the Flexural Moment Redistribution of Continuous Reinforced Concrete Beams)

  • 천주현;성대정;이상철;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.385-388
    • /
    • 2006
  • The purpose of this study is to offer an appropriate method of the degree of the flexural moment redistribution for continuous reinforced concrete beams. Twenty-four two-span continuous beams were selected to determine the manner and degree of moment redistribution. The concept of ductility is linked to the moment redistribution capacity and, consequently, the safety of the structure. Knowledge of the plastic rotation capacity of plastic regions of the structure is important for a plastic analysis or a linear analysis with moment redistribution. A nonlinear finite element analysis program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used to evaluate the ultimate strength and degree of moment redistribution. The nonlinear material model for the reinforced concrete is composed of models for characterizing the behavior of the concrete, in addition to a model for characterizing the reinforcing bars.

  • PDF

정모멘트를 받는 프리스트레스트 합성형교의 휨 거동 (Flexural Behaviors of Prestressed Composite Girder Bridges subjected to Positive Flexural Moment)

  • 강병수;주영태;성원진;신동훈;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.415-418
    • /
    • 2005
  • Prestressed composite girder bridges with PS tendon at positive flexural moment region offer elastic behavior to higher loads, increased ultimate capacity and reduced structural steel weight. Two beams were tested to examine ultimate behaviors of prestressed composite girder bridges subjected to positive flexural moment. The experimental observations of the Prestressed composite girder bridges subjected to positive flexural moment are investigated and compared to the numerical results obtained by sectional analysis method, and 1-D. and 3-D. finite element analysis methods.

  • PDF

박리를 고려한 지하박스구조물의 화재하중해석 II : 내하력 (Fire Loading Analysis of Underground Box Structure with Considering of Concrete Spalling II : Load Carrying Capacity)

  • 이계희;김선훈
    • 한국전산구조공학회논문집
    • /
    • 제20권4호
    • /
    • pp.485-492
    • /
    • 2007
  • 본 논문에서는 1편에서 얻어진 온도분포와 박리시간이력을 이용하여 지하박스구조물의 열응력을 산정하고 이에 기반한 열모멘트를 산청하였다. 또한 이때의 온도분포를 바탕으로 구조물의 열적비선형성을 고려한 극한모멘트를 산정하여 구조물의 내하력을 산정하였다. 그 결과 상부슬래브의 부모멘트 구간은 단면의 온도경사에 의해서 발생하는 열모멘트에 의해 지배받는 것으로 나타났다. 반면 정모멘트 구간은 박리에 의해 화염에 노출된 철근의 항복응력에 의해 지배받는 것으로 나타났다.

Moment redistribution of continuous composite I-girder with high strength steel

  • Joo, Hyun Sung;Moon, Jiho;Sung, Ik-Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.873-887
    • /
    • 2015
  • The continuous composite I-girder should have a sufficient rotation capacity (or ductility) to redistribute the negative bending moment into an adjacent positive bending moment region. However, it is generally known that the ductility of the high strength steel is smaller than that of conventional steel, and application of high strength steel can cause ductility problems in a negative moment region of the I-girder. In this study, moment redistribution of the continuous composite I-girder with high strength steel was studied, where high strength steel with yield stress of 690 MPa was considered (the ultimate stress of the steel was 800 MPa). The available and required rotation capacity of the continuous composite I-girder with high strength steel was firstly derived based on the stress-strain curve of high strength steel and plastic analysis, respectively. A large scale test and a series of non-linear finite element analysis for the continuous composite I-girder with high strength steel were then conducted to examine the effectiveness of proposed models and to investigate the effect of high strength steel on the inelastic behavior of the negative bending moment region of the continuous composite I-girder with high strength steel. Finally, it can be found that the proposed equations provided good estimation of the requited and available rotation capacity of the continuous composite I-girder with high strength steel.

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan;Wenfeng Huang;Shuoshuo Zhao;Junhu Shao;Dong Shen;Guoqiang Jin
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.59-71
    • /
    • 2023
  • Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.

Experimental studies on composite beams with high-strength steel and concrete

  • Zhao, Huiling;Yuan, Yong
    • Steel and Composite Structures
    • /
    • 제10권5호
    • /
    • pp.373-383
    • /
    • 2010
  • This paper presents the experimental studies of the flexural behavior of steel-concrete composite beams. Herein, steel-concrete composite beams were constructed with a welded steel I section beam and concrete slab with different material strength. Four simply supported composite beams subjected to two-point concentrated loads were tested and compared to investigate the effect of high strength engineering materials on the overall flexural response, including failure modes, load deflection behavior, strain response and interface slip. The experimental results show that the moment capacity of composite beams has been improved effectively when high-strength steel and concrete are used. Comparisons of the ultimate flexural strength of beams tested are then made with the calculated results according to the methods specified in guideline Eurocode 4. The ultimate flexural strength based on current codes may be slightly unconservative for predicating the moment capacity of composite beams with high-strength steel or concrete.

포스트텐션 콘크리트 보에서 비부착 외부강봉의 응력 (Stress of External Steel Rod in Post-Tensioned Concrete Beam)

  • 이수헌;강현구;신경재
    • 한국공간구조학회논문집
    • /
    • 제15권1호
    • /
    • pp.47-55
    • /
    • 2015
  • This paper shows the simplified equation to predict the ultimate moment capacity and corresponding rod stress in reinforced concrete beam with external post-tensioning rods. Because the stress of external post-tensioning rod depends on the beam deflection, the previous analytical model for post-tensioned beams requires a tedious iteration process. Also, the stress equations in ACI code or other researchers' models are suitable only for internal tendons in concrete beams. In this study, given the lack of analytical approaches to predict the nominal stress of the external unbonded rod, a simple and robust equation has been proposed for externally post-tensioned concrete beams. It is concluded that the proposed equation predicted the stress of external steel rods in post-tensioned concrete beams reasonably well.