• Title/Summary/Keyword: Ultimate Compressive Strength

Search Result 413, Processing Time 0.026 seconds

Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads

  • Kang, Hyun-Sik;Lim, Seo-Hyung;Moon, Tae-Sup;Stiemer, S.F.
    • Steel and Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.17-34
    • /
    • 2005
  • This paper presents an experimental study and its findings of the behavior of circular and square stub columns filled with high strength concrete ($f_c^{\prime}$=49MPa) and polymer cement concrete (PCC) under concentric compressive load. Twenty-four specimens were tested to investigate the effects of variations in the tube shape (circular, square), wall thickness, and concrete type on the axial strength of stub columns. The characteristics of CFT stub columns filled with two types of concrete were investigated in order to collect the basic design data for using the PCC for the CFT columns. The experimental investigations included consideration of the effects of the concrete fill on the failure mode, ultimate strength, initial stiffness and deformation capacity. One of the key findings of this study was that circular section members filled with PCC retain their structural resistance without reduction far beyond the ultimate capacity. The results presented in this paper will provide experimental data to aid in the development of design procedures for the use of advanced concretes in CFT columns. Additionally, these results give structural designers invaluable insight into the realistic behavior of CFT columns.

Behavior of damaged and undamaged concrete strengthened by carbon fiber composite sheets

  • Ilki, Alper;Kumbasar, Nahit
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.75-90
    • /
    • 2002
  • Many existing concrete structures suffer from low quality of concrete and inadequate confinement reinforcement. These deficiencies cause low strength and ductility. Wrapping concrete by carbon fiber reinforced polymer (CFRP) composite sheets enhances compressive strength and deformability. In this study, the effects of the thickness of the CFRP composite wraps on the behavior of concrete are investigated experimentally. Both monotonic and repeated compressive loads are considered during the tests, which are carried out on strengthened undamaged specimens, as well as the specimens, which were tested and damaged priorly and strengthened after repairing. The experimental data shows that, external confinement of concrete by CFRP composite sheets improves both compressive strength and deformability of concrete significantly as a function of the thickness of the CFRP composite wraps around concrete. Empirical equations are also proposed for compressive strength and ultimate axial deformation of FRP composite wrapped concrete. Test results available in the literature, as well as the experimental results presented in this paper, are compared with the analytical results predicted by the proposed equations.

Experiments for the Buckling Behavior of Reinforced Concrete Columns (철근콘크리트 기둥의 좌굴거동에 관한 실험적 연구)

  • 조성찬;장정수;김진근;김윤용;김광석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.284-289
    • /
    • 1993
  • To analyze the effects of compressive strength of concrete and longitudinal steel ratio on buckling behavior of columns, 36tied reinforced concrete columns with hinged ends were tested. The 100mm square cross section was used and the amount of eccentricity was 10mm. The compressive strengths of column specimens with slenderness ratios of 15, 30 and 50 were 202, 513 and 752 kg/$\textrm{cm}^2$. The longitudinal steel ratio of columns with bending about a section diagonal and about a principal axis were 2.85%(4-D10). The ratio of ultimate load capacity to that of short column with the same eccentricity was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio, the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that for the same quantity of confining steel and level of axis load, there is little difference between the flexural strength for bending about a section diagonal and for bending about principal axis.

  • PDF

Variations in Ductility of Shear Wall with Length of Boundary Confinement (단부 횡보강영역에 따른 전단벽 연성도의 변화)

  • 강수민;오재은;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.853-858
    • /
    • 2001
  • Experimental studies were peformed to investigate variations in ductility of shear wall with length of boundary confinement. Eight specimens containg different lengths of confinment zone, which model compressive zone in plastic regions of shear walls, were tested against eccentric vetical load. Stress-strain model for confined concrete was used to predict strength and ductility of the specimens, which was compared to the test results. The results obtained show that failure of the compressive zone occurs in a brittle manner when the stress of unconfined zone softened after the ultimate strength were reached. To enhance the ductility of shear walls with concentrated confinement zone such as barbell-type walls, the ultimate strength of the confinement zone needs to be increased, and for shear walls with distributed confinement zone the length of the confinement zone needs to be extended.

  • PDF

The Estimation on the Stirrup Effectiveness of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보에서 스터럽 유효성의 평가)

  • 김진근;박찬규;이영재;서원명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.267-272
    • /
    • 1995
  • The objective of this study is to investigate the effect of concrete strength on the stirrup effectiveness factor(K) of reinforced concrete beams with stirrup based on previous test results(a/d$\geq$2.5). In the procedure of the estimation of K, it was assumed that the ultimate shear strength for beams without stirrup is equal to the concrete contribution to shear strength for beam with stirrup. A model equation for calculation the stirrup of compressive strength of concrete. It was shown that the stirrup effective factor of compressive strength of concrete. It wah shown that the stirrup effective factor is greater than 1.0 up to compressive strength 85MPa. Therefore the current ACI Code equation for predicting the shear strength and the stirrup effectiveness factor of 1.0 is conservative for nomal and high stength concrete beams with stirrup.

  • PDF

Size Effect for Flexural Compressive Strength of Concrete (콘크리트의 휨 압축강도의 크기효과)

  • Kim, Jin-Keun;Yi, Seong-Tae;Yang, Eun-Ik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • When the ultimate strength of a concrete flexural member is evaluated, the effect of member size is usually not considered. For various types of loading, however, the strength always decreases with the increment of member size. In this paper the size effect of a flexural compression member is investigated by experiments. For this purpose, a series of C-shaped specimens subjected to axial compressive load and bending moment was tested using three different sizes of specimens with a compressive strength of 528 kg/$cm^2$. According to test results the size effect on flexural compressive strength was apparent, and more distinct than that for uniaxial compressive strength of cylinders. Finally a model equation was derived using regression analyses with experimental data.

Analysis and prediction of ultimate strength of high-strength SFRC plates under in-plane and transverse loads

  • Perumal, Ramadoss;Palanivel, S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1273-1287
    • /
    • 2014
  • Plates are most widely used in the hulls of floating concrete structures, bridge decks, walls of off-shore structures and liquid storage tanks. A method of analysis is presented for the determination of load-deflection response and ultimate strength of high-strength steel fiber reinforced concrete (HSSFRC) plates simply supported on all four edges and subjected to combined action of external compressive in-plane and transverse loads. The behavior of HSSFRC plate specimens subjected to combined uniaxial in-plane and transverse loads was investigated. The proposed analytical method is compared to the physical test results, and shows good agreement. To predict the constitutive behavior of HSSFRC in compression, a non-dimensional characteristic equation was proposed and found to give reasonable accuracy.

Flexural Performance of Reinforced Polymer Concrete Beams with High Strength (철근 보강 고강도 폴리머 콘크리트 보의 휨특성)

  • 연규석;김관호;김기락
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.136-141
    • /
    • 1998
  • While a little research has been peformed on flexural behavior of reinforced polymer concrete (RPC)beams with the compressive strength lower than 900kg/$\textrm{cm}^2$ vary little exists in conjunction with the behavior of RPC 1,000kg/$\textrm{cm}^2$ or higher in compressive strength. In this paper the flexural performance of high strength polymer concrete beams with 1,450kg/$\textrm{cm}^2$ in compressive strength was evaluated. The unsaturated polyester resin was used to make polymer concrete as binder. The beams with stirrup singly/doubly were tested to examine the effect of tensile reinforcement ratio. As test results, reinforcement ratio increased with the increase moment strength, decreased with ultimate deflection, ductility index.

  • PDF

An Empirical Formulation for Predicting the Ultimate Compressive Strength of Plates and Stiffened Plates (판 및 보강판의 압축최종강도 실험식)

  • J.K. Paik;J.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.8-21
    • /
    • 1996
  • The aim of this study is to derive an empirical formula for predicting ultimate strength of plates and stiffened plates subjected to uniaxial compression. The test data of ultimate compressive strength for unstiffened and stiffened plates previously obtained by others have been collected. Many test data are necessary so that the derived formula will be available in wide range of plate dimensions. Additional collapse tests for a plate specimen with one flat bar stiffener, varying dimensions of plate and stiffener were performed in this study. On the basis of the present and previous experimental data, a more useful empirical formula than the existing ones was derived by applying the least square method.

  • PDF

A Study on the Characteristics of High Tensile Strength Steel (SM570) Plates in Beam-Column Members (고장력(SM570) 강재의 기둥재 특성에 관한 연구)

  • Im, Sung Woo;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • As building structures become higher and longer-spanned these days, welding fabrication may become more and more difficult as the thickness of the plate increases. The use of high-strength steel is one of the solutions to reduce membrane thickness. Using high-strength steel would reduce the size of the column, which is under high axial load. Performance tests of high-strength box-type and H-shaped welded columns subjected to the combined bending and axial compressive load were carried out with variable axial load and slenderness ratio. Beam-column test results showed that the ultimate strength satisfied both ASD and LRFD codes