• Title/Summary/Keyword: Ulleng Basin

Search Result 7, Processing Time 0.017 seconds

Paleoenvironments and Volcanism of the Ulleung Basin : Sedimentary Environment (울릉분지의 고환경과 화산활동 특성에 관한 연구 : 퇴적환경)

  • PARK Maeng-Eon;LEE Gwang-Hoon;SONG Yong-Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.481-496
    • /
    • 1996
  • The last Sea is a typical bark-arc basin consisting of basins, plateaus, ridges, and seamounts. The Ulleng Basin, located in the southwestern corner of the last Sea, contains thick Neogene sedimentary sequence. Analysis of over 2,500 km of single-channel seismic reflection data suggests that hemipelagic sedimentation prevailed over much of the basin during the late Miocene and pelagic sedimentation became more dominant during the Pliocene. During the Pleistocene terrigeneous sediments transported by turbidity currents and other gravity flows, together with continuous hemipelagic settling, resulted in well-stratified sedimentary layers. Influx of terrigenous sediments during the Pleistocene formed depocenters in the western and southern parts of the basins. In the Ulleung Interplain Gap, where the Ulleung Basin joins the deeper Japan Basin, sediment waves suggesting bottom current activities are seen.

  • PDF

포항분지에 대한 석유지질학적 연구

  • 김기현;김재호;김상석;박동배;이용일
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.48-55
    • /
    • 1998
  • The Pohang Basin is located in Pohang City and adjacent coastal areas in the southeastern Korea. It has a sequence of 900 meters of Neogene marine sediments (Yeonil Group) while offshore basins in the East Sea, e.g., the Ulleng basin, is over 10 Km in thickness. An understanding of the marine Yeonil Group in the Pohang Basin may provide insights into the hydrocarbon potential of the offshore East Sea regions. Heulandite, smectite, dolomite, kaolinite and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these minerals, heulandite occurs as a main cement only in sandstones consisting of volcanic matrix, Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeonil Group has undergone shallow burial, temperatures below about 60 degrees. This suggest that sandstones have experiened weak diagenetic alteration. In order to reconstruct the thermal history of the basin, apatite fission-track analysis was carried out. Aapparent apatite fission-track ages (AFTAs) exhibit a broader range of ages from 238 Ma to 27 Ma with mean track lengths in the range of $15.24\pm8.0$ micrometers, indicating that these samples had undergone significant predepositional thermal alteration. The Triassic to Cretaceous AFTAs seem In represent the timing of cooling of their sedimentary sources. Late Cretaceous mean AFTA $(79.0\pm8.0 Ma)$ on the Neogene Yeonil Group indicates that the Yeonil Group had not been buried deeper than 2km since its deposition. The organic matters of. the Pohang Basin remain in the immature stage of thermal evolution because burial depth and temperature were not sufficient enough for maturation even in the deep section of the basin.

  • PDF

Marine Geophysical Constraints on the Origin and Evolution of Ulleung Basin and the Seamounts in the East Sea (울릉분지와 동해 해산의 기원과 발달과정에 대한 해양지구물리학적 연구)

  • Kim Jinho;Park Soo-chul;Kang Moo-hee;Kim Kyong-O;Han Hyun-chul
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.643-656
    • /
    • 2005
  • The East Sea, a marginal sea or back-arc basin, consists of Japan Basin, Yamato Basin, and Ulleung Basin and is surrounded by the Pacific Plate and Philippine Sea Plate. Ulleung Basin locates in the southwestern part of the East Sea and shows the depth of 1,500 m in average and 2,500 m in maximum, connecting to the Japan Basin along 2,000 m contour. The slope of the seafloor is greater in the western side of the basin than in the southern and the eastern side. The crustal thickness of the Ulleung Basin from the OBS tends to get thicker toward the north and the west side and the sediment thickness of the Ulleung Basin is getting thicker toward the southeast side and reaches up to 12 km. The crustal type of the Ulleung Basin was variously suggested as like as a rifted continental crust, an extended continental crust, and an incipient oceanic trust. The origin of the crustal formation and the Ulleung Basin, however, is still controversial. Based on the bathymetry and gravtiy anomaly data for this study, the axis of the Ulleung Basin shows that the basin develops along the axis trending NW-SE direction and reveals a general symmetry of the bathymetry. And also the free-air gravity anomalies show a very similar pattern to the bathymetry of the basin. The sediment thickness is relatively thicker in the southeastern side of the basin than in the northwestern side. Although the crustal age of the Ulleung Basin is supposed to be younger than them of the Japan Basin and the Yamato Basin, the free-air gravity anomalies of the Ulleung Basin ranging -40 to 50 mGals are lower than the other basins, which suggests that the densities of crust and sediment of the Ulleng Basin are lower than the Japan Basin and the Yamato Basin.

Plio-Quaternary Seismic Stratigraphy and Depositional History on the Southern Ulleung Basin, East Sea (동해 울릉분지 남부의 플라이오-제4기 탄성파 층서 및 퇴적역사)

  • Joh, Min-Hui;Yoo, Dong-Geun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.90-101
    • /
    • 2009
  • Analysis of multi-channel seismic reflection data from the Southern Ulleung Basin reveals that Plio-Quaternary section in the area consists of nine stacked sedimentary units separated by erosional unconformities. On the southern slope, these sedimentary units are acoustically characterized by chaotic seismic facies without distinct internal reflections, interpreted as debris-flow bodies. Toward the basin floor, the sedimentary units are defined by well-stratified facies with good continuity and strong amplitude, interpreted as turbidite/hemipelagic sediments. The seismic facies distribution suggests that deposition of Plio-Quaternary section in the area was controlled mainly by tectonic movement and sea-level fluctuations. During the Pliocene, sedimentation was mainly controlled by tectonic movements related to the back-arc closure of the East Sea. The back-arc closure that began in the Miocene caused compressional deformation along the southern margin of the Ulleung Basin, resulting in regional uplift which continued until the Pliocene. Large amounts of sediments, eroded from the uplifted crustal blocks, were supplied to the basin, depositing Unit 1 which consists of debris-flow deposits. During the Quaternary, sea-level fluctuations resulted in stacked sedimentary units (2-9) consisting of debris-flow deposits, formed during sea-level fall and lowstands, and thin hemipelagic/turbidite sediments, deposited during sea-level rise and highstands.

A Study on Volcanic Stratigraphy and Fault of Ulleung-do, Korea (울릉도의 화산층서와 단층에 대한 연구)

  • Kim, Ki-Beom;Lee, Gi-Dong
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.321-330
    • /
    • 2008
  • This study, geological survey was carried out in order to study on the geology, geological structure and volcanic activity of the Ulleung-do volcano body. Ulleung-do is the volcano body of about 3,000m heights from the East Sea seabed. The geology of Ulleung-do is divided into basaltic agglomerate, trachytic agglomerate, trachyte, trachytic pumice and trachyandesite in ascending orders. The faults in caldera of Nari Basin came to make the reverse triangle style in compliance with sinking. The faults in circumference of Nari Basin are ranging with northeast-southwest direction and northwest-southeast direction. The Quaternary volcanic activities in the Ulleung-do are divided into 5 activity period. The engineering geologists and the applied geologists were not easy to apply because complicated geology of Ulleung-do. Therefore, this study supplied simple geology of Ulleung-do for them.

Different $CaCO_3$ profiles in cores PC1 and PC2 from the Ulleung Basin in the East Sea (동해 울릉분지에서 채취한 코아 PC1과 PC2의 탄산염 함량 변화 차이와 그 원인)

  • Lee, Jong-Min;Heo, Jin-Bee;Kim, Hyung-Jeek;Khim, Boo-Keun
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.2
    • /
    • pp.17-24
    • /
    • 2011
  • We investigated the variation of $CaCO_3$ contents in cores PC1 and PC2 recovered from the continental slope area of the Ulleung Basin in the East Sea. $CaCO_3$ contents of cores PC1 and PC2 varied between 0.6 and 17.2% and between 0.3 and 43.0%, respectively. $CaCO_3$ contents in the upper part of core PC1 corresponding to MIS 1 are less than 5%, whereas those in the lower part of MIS 2 are more than 10%. Such variation of $CaCO_3$ contents in core PC1 confirms the previous results of $CaCO_3$ studies in the East Sea. In core PC2, $CaCO_3$ contents of the upper part are similar to those of core PC1. However, $CaCO_3$ contents in the lower part of core PC2 are more than 40%. According to XRD operation and SEM examination, the high $CaCO_3$ contents in the lower part of core PC2 are more attributable to the authigenic carbonate minerals rather than the biogenic carbonate composition. Such abundant authigenic carbonate minerals are closely related to the dissociation of methan hydrates which were observed in the Ulleung Basin.

  • PDF

A Study on the Origin of Anomalously Low Saline Tsushima Current Water Using $^{228}Ra$ ($^{228}Ra$를 이용한 이상 저염 대마난류수의 기원 추적 연구)

  • Lee, Tong-Sup;Kim, Ki-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.175-182
    • /
    • 1998
  • Recently it is reported that anomalously low saline surface waters (salinity < 32) occurred at the Ulleung Basin in the East Sea-Japan Sea, during early September to November 1996. Apparent source of such a low saline watermass seems remotely linked to the Changjiang Dilute Water (CDW), which expands to the vicinity of Cheju Island during a flood season. Based on the assumption that waters passing through the Western Channel of the Korea Strait are formed by a mixing of Kuroshio Water and CDW, simplified two end-member mixing model using $^{228}Ra/^{226}Ra$ as a conservative tracer is applied to calculate the contribution of each end member for the formation of low saline surface seawater. Model calculations show CDW contributes $58{\pm}3%$ in September 1996 (S=32.17) and $10{\pm}3%$ in February 1997 (S=34.53) in the formation of surface water flowing into the Western Channel of the Korea Strait. Although results arc deduced from a simplified model with limited data, this study demonstrates that Changjiang discharge is clearly traceable to the interior of the East Sea-Japan Sea in fall season. Undergoing Three Valley Dam construction in the Changjiang River would invoke inevitable changes in the nature and discharge of CDW and its impacts on the marine environment might be significant in the northern East China Sea and even in the Ulleng Basin for coming decades.

  • PDF