• Title/Summary/Keyword: Ulam-Hyers stability

Search Result 349, Processing Time 0.022 seconds

ON THE STABILITY OF A MODIFIED JENSEN TYPE CUBIC MAPPING

  • Kim, Hark-Mahn;Ko, Hoon;Son, Jiae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.129-138
    • /
    • 2008
  • In this paper we introduce a Jensen type cubic functional equation $$f\(\frac{3x+y}{2}\)+f\(\frac{x+3y}{2}\)\\=12f\(\frac{x+y}{2}\)+2f(x)+2f(y),$$ and then investigate the generalized Hyers-Ulam stability problem for the equation.

  • PDF

A FIXED POINT APPROACH TO THE ORTHOGONAL STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

  • JEON, YOUNG JU;KIM, CHANG IL
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.627-634
    • /
    • 2015
  • In this paper, we investigate the following orthogonally additive-quadratic functional equation f(2x + y) - f(x + 2y) - f(x + y) - f(y - x) - f(x) + f(y) + f(2y) = 0. and prove the generalized Hyers-Ulam stability for it in orthogonality spaces by using the fixed point method.

A FIXED POINT APPROACH TO THE STABILITY OF ADDITIVE-QUADRATIC FUNCTIONAL EQUATIONS IN MODULAR SPACES

  • Kim, Changil;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.321-330
    • /
    • 2015
  • In this paper, we prove the generalized Hyers-Ulam stability for the following additive-quadratic functional equation f(2x + y) + f(2x - y) = f(x + y) + f(x - y) + 4f(x) + 2f(-x) in modular spaces by using a fixed point theorem for modular spaces.

On solution and stability of functional equation $f(x+y)^2=af(x)f(y)+bf(x)^2+cf(y)^2$

  • Jung, Soon-Mo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.561-571
    • /
    • 1997
  • The general (continuous) solution and the asymptotic behaviors of the unbounded solution of the functional equation $f(x + y)^2 = af(x)f(y) + bf(x)^2 + cf(y)^2$ and the Hyers-Ulam stability of that functional equation for the case when a = 2 and b = c = 1 shall be investigated.

  • PDF

ON THE HYERS-ULAM STABILITY OF A QUADRATIC MAPPING IN BANACH MODULES

  • Bae, Jae-hyeong;Park, Won-Gil
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.351-358
    • /
    • 2003
  • We prove the generalized Hyers-Ulam stability of a quadratic functional equation f($\chi$+ y + z) + f($\chi$) + f(y) + f(z) = f($\chi$+ y) + f(y + z) + f(z + $\chi$) for the functions defined between Banach modules over a Banach algebra.

A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces

  • Mirmostafaee, Alireza Kamel
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.691-700
    • /
    • 2009
  • We use the fixed alternative theorem to establish Hyers-Ulam-Rassias stability of the quadratic functional equation where functions map a linear space into a complete quasi p-normed space. Moreover, we will show that the continuity behavior of an approximately quadratic mapping, which is controlled by a suitable continuous function, implies the continuity of a unique quadratic function, which is a good approximation to the mapping. We also give a few applications of our results in some special cases.