• Title/Summary/Keyword: Ulam stability

Search Result 355, Processing Time 0.03 seconds

Global Existence and Ulam-Hyers Stability of Ψ-Hilfer Fractional Differential Equations

  • Kucche, Kishor Deoman;Kharade, Jyoti Pramod
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.647-671
    • /
    • 2020
  • In this paper, we consider the Cauchy-type problem for a nonlinear differential equation involving a Ψ-Hilfer fractional derivative and prove the existence and uniqueness of solutions in the weighted space of functions. The Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the Cauchy-type problem is investigated via the successive approximation method. Further, we investigate the dependence of solutions on the initial conditions and their uniqueness using 𝜖-approximated solutions. Finally, we present examples to illustrate our main results.

ON THE STABILITY OF A GENERAL ADDITIVE FUNCTIONAL INEQUALITY IN BANACH SPACES

  • Chung, Sang-Cho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.907-913
    • /
    • 2013
  • In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality $${\parallel}f(2x_1)+f(2x_2)+{\cdots}+f(2x_n){\parallel}{\leq}{\parallel}tf(x_1+x_2+{\cdots}+x_n){\parallel}$$ in Banach spaces where a positive integer $n{\geq}3$ and a real number t such that 2${\leq}$t

STABILITY OF THE JENSEN TYPE FUNCTIONAL EQUATION IN BANACH ALGEBRAS: A FIXED POINT APPROACH

  • Park, Choonkil;Park, Won Gil;Lee, Jung Rye;Rassias, Themistocles M.
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.149-161
    • /
    • 2011
  • Using fixed point methods, we prove the generalized Hyers-Ulam stability of homomorphisms in Banach algebras and of derivations on Banach algebras for the following Jensen type functional equation: $$f({\frac{x+y}{2}})+f({\frac{x-y}{2}})=f(x)$$.

ON THE STABILITY OF A GENERAL QUADRATIC FUNCTIONAL EQUATION AND ITS APPLICATIONS

  • Jun, Kil-Woung;Kim, Hark-Mahn
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.57-75
    • /
    • 2004
  • The aim of this paper is to solve the general solution of a quadratic functional equation f(x + 2y) + 2f(x - y) = f(x - 2y) + 2f(x + y) in the class of functions between real vector spaces and to obtain the generalized Hyers-Ulam stability problem for the equation.

  • PDF

GENERALIZED STABILITY OF EULER-LAGRANGE TYPE QUADRATIC MAPPINGS

  • Jun, Kil-Woung;Oh, Jeong-Ha
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • In this paper, we investigate the generalized Hyers-Ulam{Rasssias stability of the following Euler-Lagrange type quadratic functional equation $$f(ax+by+cz)+f(ax+by-cz)+f(ax-by+cz)+f(ax-by-cz)=4a^2f(x)+4b^2f(y)+4c^2f(z)$$.

  • PDF

STABILITY OF FUNCTIONAL EQUATIONS WITH RESPECT TO BOUNDED DISTRIBUTIONS

  • Chung, Jae-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.361-370
    • /
    • 2008
  • We consider the Hyers-Ulam type stability of the Cauchy, Jensen, Pexider, Pexider-Jensen differences: $$(0.1){\hspace{55}}C(u):=u{\circ}A-u{\circ}P_1-u{\circ}P_2,\\(0.2){\hspace{55}}J(u):=2u{\circ}\frac{A}{2}-u{\circ}P_1-u{\circ}P_2,\\(0.3){\hspace{18}}P(u,v,w):=u{\circ}A-v{\circ}P_1-w{\circ}P_2,\\(0.4)\;JP(u,v,w):=2u{\circ}\frac{A}{2}-v{\circ}P_1-w{\circ}P_2$$, with respect to bounded distributions.

  • PDF