• Title/Summary/Keyword: Ubiquitous joint model

Search Result 16, Processing Time 0.018 seconds

Numerical simulation and countermeasure on upheaval generation in the road caused by sliding of a slope (사면활동으로 야기된 도로부 융기발생에 대한 수치해석 및 고찰)

  • Kim, Seung-Hee;Rhee, Jong-Hyun;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.833-841
    • /
    • 2008
  • Recently, the upheaval generation in the road which is under service had been reported. Due to the upheaval generation, total 4 lanes were forced to curtail to 3 lanes, and traffic was delayed. In normal situation of cut-slopes in korea, that condition is hard to detect since most cut-slopes contain discontinuous material, that is rock. Common collapses in rock-slopes is wedge failure, plane failure and toppling failure which is all individual mechanism of discontinuous rock mass. In contrast, such upheaval in the road in front of cut-slope can be generated only when circular movement is triggered within the cut-slope. In this sense, rock-slopes barely show any kind of movement in the road locates at the front of them. Numerical analysis is general method in simulation of slope displacement and evaluation of safety. However, numerical analysis programs which are related with rock-slopes are not able to simulate such upheaval movement because that programs are based on discontinuous modeling mechanism. In addition, although numerical analysis programs which are based on FEM/FDM and thus utilize continuous modeling mechanism are able to simulate circular movement and upheaval situation, they have weakness in reflecting discontinuities of rock-slope itself. In this study, detailed in-site investigation and numerical analysis based on in-site condition were performed in order to expect upheaval movement in the road. In this procedure, the FLAC program which uses continuous modeling method was utilized, and new approach reflecting discontinuity developed toward the road with a ubiquitous joint model was tried to derive reliable analysis result.

  • PDF

3D Pose Estimation of a Human Arm for Human-Computer Interaction - Application of Mechanical Modeling Techniques to Computer Vision (인간-컴퓨터 상호 작용을 위한 인간 팔의 3차원 자세 추정 - 기계요소 모델링 기법을 컴퓨터 비전에 적용)

  • Han Young-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.4 s.304
    • /
    • pp.11-18
    • /
    • 2005
  • For expressing intention the human often use body languages as well as vocal languages. Of course the gestures using arms and hands are the representative ones among the body languages. Therefore it is very important to understand the human arm motion in human-computer interaction. In this respect we present here how to estimate 3D pose of human arms by using computer vision systems. For this we first focus on the idea that the human arm motion consists of mostly revolute joint motions, and then we present an algorithm for understanding 3D motion of a revolute joint using vision systems. Next we apply it to estimating 3D pose of human arms using vision systems. The fundamental idea for this algorithm extension is that we may apply the algorithm for a revolute joint to each of the revolute joints of hmm arms one after another. In designing the algorithms we focus on seeking closed-form solutions with high accuracy because we aim at applying them to human computer interaction for ubiquitous computing and virtual reality.

절리암반 중에 굴착된 터널의 거동평가를 위한 수치 해석적 연구

  • Kang, Yong;Yoo, Gwang-Ho;Park, Yeon-Jun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.03a
    • /
    • pp.97-108
    • /
    • 2001
  • 절리가 발달한 암반의 거동평가를 위한 해석적 방법은 연속체 모델과 불연속체 모델을 사용하는 방법으로 대별할 수 있으며, 연속체 모델을 사용할 경우에는 유한요소법이나 유한차분법을 이용하는 방법이 주종을 이루고 있다. 불연속체 모델은 개별 블록들의 움직임을 일일이 계산하므로 매우 매력적인 방법이지만 현재의 지반조사 기술수준으로는 지반내의 절리발달사항을 정확히 파악하기가 매우 어려우며, 컴퓨터의 계산용량이 너무 과다해지는 단점이 있다. 따라서, 불연속면을 포함한 암반을 연속체로 가정한 편재절리 모델(ubiquitous joint model)을 이용한 연구가 요구된다. 한편, 터널의 경우는 사면의 경우와는 달리 파괴면의 형상을 사전에 가정하기 어렵기 때문에 한계평형법에 기초한 해석법 등을 적용하여 안전율을 구하기가 곤란하다. 이러한 이유에서 터널을 대상으로 한 수치해석은 안전율을 구하기보다는 안정성을 평가하는 데만 제한적으로 사용되어 왔다. 본 논문에서는 편재절리모델을 이용한 절리암반터널의 거동 평가기법과 수치해석에 의해 터널의 안전율을 구하는 방법을 제시하는 데에 그 목적이 있다. 이를 위해 터널의 안전율 구하는 방법을 강도감소기법에 근거하여 제시하였다.

  • PDF

A case study on the stability analysis of rock slopes with discontinuities (절리암반 사면의 안정성 해석 사례)

  • Song, Won-Gyeong;Shin, Hui-Sun;Seon, Woo-Chun;Park, Chan
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.10a
    • /
    • pp.69-82
    • /
    • 2001
  • 본 연구는 절리가 발달한 고속도로 절취 사면들의 안정성을 검토하기 위하여 수행되었다. 물성시험을 바탕으로 한 지질 강도지수(GSI)를 이용하여 절리가 발달한 암반에 대한 최적의 물성을 구하는 과정을 제시하였다. 안정성 검토를 위해 FLAC에 의한 수치해석을 실시하였으며 이 때 사용한 모델은 절리 발달 상태가 균일하게 분포하였으므로 Ubiquitous Joint Model을 선정하였다. 해석은 건기와 우기의 경우로 나누어 실시하였는데 조건에 따라 절리면의 강도를 달리 적용하였다. 본 논문은 굴착 사면에서 쉽게 접할 수 있는 절리암반 환경에서 최적의 물성을 결정하고 이를 이용하여 안정성을 분석할 패 하나의 참고자료로 활용할 수 있을 것이다.

  • PDF

A Case Study of Road Upheaval caused by Slope Movement, and Verification of Reinforcement using Real-Time Monitoring (암반비탈면 활동에 의한 도로 융기현상 사례 연구 및 실시간 모니터링을 이용한 대책공법 검증)

  • Lee, Jong-Hyun;Koo, Ho-Bon;Kim, Seung-Hyun;Kim, Seung-Hee
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The movement of rock cut slopes may result in upheaval of an adjacent road. Because most cut slopes consist of rock, road upheaval due to the movement of a cut slope is a rare phenomenon in Korea. We found that the movement of rock slopes which are heavily weathered and with strongly developed weak zones is governed by circular failure of the overall rock formation rather than by failure along discontinuities. The results of a numerical analysis revealed that the application of a ubiquitous joint model in a continuum analysis is appropriate for anisotropic rocks (e.g., schist) and for slopes for which the stability is influenced by a particular discontinuity. The results of a field investigation and numerical analyses suggest that retaining walls and anchors should be used to stabilize rock slopes and that real-time monitoring equipment should be installed to assess the reinforcing effect of the remedial measures.

Case study for Stability Estimation of Subway Twin Tunnels Using Scaled Model Tests (축소모형실험을 통한 지하철 병설터널의 안정성평가 사례연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.425-438
    • /
    • 2019
  • A scaled model test was performed to evaluate the stability of subway twin tunnels excavated in the sedimentary rocks with subhorizontal bedding planes. The size of studied tunnel was 6.2 m×6.8 m and pillar width was 4 m. The anisotropic model test specimen was manufactured with the modeling materials suitable for in-situ rocks by way of dimensional analysis. Fracture and deformation behaviors of tunnels according to applied loads were investigated through the biaxial compression test. As the load was increased on the model specimen, the first crack occurred in the middle part of the pillar across twin tunnels and the gradual fractures progressed at crown and floor of twin tunnels. All the cracks in pillar were generated along the existing bedding planes so that they were found to be the main cause of the pillar failure. In addition, the test results were verified by numerical analysis on the experimental conditions using FLAC ubiquitous joint model. The distribution of plastic regions obtained from numerical analysis were in general agreement with test results, confirming the reliability of the scaled model test conducted in this study.