• Title/Summary/Keyword: Ubiquitous Positioning System

Search Result 66, Processing Time 0.025 seconds

The Accuracy analysis of a RFID-based Positioning System with Kalman-filter (칼만필터를 적용한 RFID-기반 위치결정 시스템의 정확도 분석)

  • Heo, Joon;Kim, Jung-Hwan;Sohn, Hong-Gyoo;Yun, Kong-Hyun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.447-450
    • /
    • 2007
  • Positioning technology for moving object is an important and essential component of ubiquitous. Also RFID(Radio Frequency IDentification) is a core technology of ubiquitous wireless communication. In this study we adapted kalman-filter theory to RFID-based Positioning System in order to trace a time-variant moving object and verify the positioning accuracy using RMSE (Roong technology for moving object is an important and essential component of ubiquitous Mean Square Error). The purpose of this study is to verify an effect of kalman-filter on the positioning accuracy and to analyze what does each design factor have an effect on the positioning accuracy by means of simulations and to suggest a standard of optimal design factor of a RFID-based Positioning System. From the results of simulations, Kalman-filer improved the positioning accuracy remarkably; the detection range of RFID tag is not a determining factor. The smaller standard deviation of detection range improves the positioning accuracy. However it accompanies a smaller fluctuation of the positioning accuracy. The larger detection rate of RFID tag yields the smaller fluctuation in the positioning accuracy and has more stable system and improves the positioning accuracy;

  • PDF

Robust Positioning-Sensing for n Ubiquitous Mobile Robot (유비쿼터스 모바일 로봇의 강인한 위치 추정 기법)

  • Choi, Hyo-Sik;Hwang, Jin-Ah;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1139-1145
    • /
    • 2008
  • A robust position sensing system is proposed in this paper for a ubiquitous mobile robot which moves indoors as well as outdoors. The Differential GPS (DGPS) which has a position estimation error of less than 5 m is a general solution when the mobile robot is moving outdoor, while an active beacon system (ABS) with embedded ultrasonic sensors is reliable as an indoor positioning system. The switching from the outdoor to indoor or vice versa causes unstable measurements on account of the reference coordinates and algorithm changes. To minimize the switching time in the position estimation and to stabilize the measurement, a robust position sensing system is proposed. In the system, to minimize the switching delay, the door positions are stored and updated in a database. Using the database, the approaching status of the mobile robot from indoor to outdoor or vice versa has been checked and the switching conditions are prepared before the mobile robot actually moves out or moves into the door. The reliability and accuracy of the robust positioning system based on DGPS and ABS are verified and demonstrated through the real experiments using a mobile robot prepared for this research.

Robust Positioning-Sensing for a Mobile Robot (모바일 로봇의 강인한 위치 추정 기법)

  • Lee, Jang-Myung;Hwang, Jin-Ah;Hur, Hwa-Ra;Kang, Jin-Gu
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.221-226
    • /
    • 2007
  • A robust position-sensing system is proposed in this paper for ubiquitous mobile robots which move indoor as well as outdoor. The Differential GPS (DGPS) which has position estimation error of less than 5 m is a general solution when the mobile robots are moving outdoor, while an active beacon system (ABS) with embedded ultrasonic sensors is selected as an indoor positioning system. The switching from the outdoor to indoor or vice versa causes unstable measurements on account of the reference and algorithm changes. To minimize the switching time in the position estimation and to stabilize the measurement, a robust position-sensing system is proposed. In the system, to minimize the switching delay, the door positions are stored and updated in a database. The reliability and accuracy of the robust positioning system based on DGPS and ABS are verified through the real experiments using a mobile robot prepared for this research and demonstrated.

  • PDF

A Study on the Application of U-SAT System for the Indoor Positioning Technology of Ubiquitous Computing (유비쿼터스 컴퓨팅의 실내 측위 기술을 위한 U-SAT 시스템의 적용에 관한 연구)

  • Lee, Dong-Hwal;Park, Jong-Jin;Kim, Su-Yong;Mun, Young-Song;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.876-882
    • /
    • 2006
  • This study presents an ultrasonic location awareness system for the ubiquitous computing with absolute position. The flight time of ultrasonic waves is determined by a period detecting technique which is able to extend the sensing range compared with traditional methods. For location awareness, ultrasonic waves are sent successively from each ultrasonic transmitter and synchronized by radio frequency (RF) signal, where the transmitting part is fixed and the receiving part is movable. To expand the recognizing range, cell matching technique and coded ultrasonic technique are introduced. The experimentation for various distances is accomplished to verify the used period detecting technique of U-SAT system. The positioning accuracy by using cell matching is also verified by finding the locations of settled points and the usability of coded ultrasonic technique is verified. As a result, the possibility of ultrasonic location awareness system for the ubiquitous computing can be discussed as a pseudo-satellite system with low cost, a high update rate, and relatively high precision, in the places where CPS is not available.

Cooperative Positioning System Using Density of Nodes (노드의 밀도를 이용한 상호 협력 위치 측정 시스템)

  • Son, Cheol-Su;Yoo, Nem-Hyun;Kim, Wong-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.198-205
    • /
    • 2007
  • In ubiquitous environment a user can be provided with context-aware services based on his or her current location, time, and atmosphere. LBS(Location-Based Services) play an important role for ubiquitous context-aware computing. Because deployment and maintenance of this specialized equipment is costly, many studies have been conducted on positioning using only wireless equipment under a wireless LAN infrastructure. Because a CPS(Cooperative Positioning System) that uses the RSSI (Received Signal Strength Indicator) between mobile equipments is more accurate than beacon based positioning system, it requires great concentration in its applications. This study investigates the relationship between nodes by analyzing a WiPS (Wireless LAN indoor Positioning System), a similar type of CPS, and proposes a improved WiCOPS-d(Wireless Cooperative Positioning System using node density) to increase performance by determining the convergence adjustment factor based on node density.

Development of a LonRF Intelligent Device-based Ubiquitous Home Network Testbed (LonRF 지능형 디바이스 기반의 유비쿼터스 홈네트워크 테스트베드 개발)

  • 이병복;박애순;김대식;노광현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.566-573
    • /
    • 2004
  • This paper describes the ubiquitous home network (uHome-net) testbed and LonRF intelligent devices based on LonWorks technology. These devices consist of Neuron Chip, RF transceiver, sensor, and other peripheral components. Using LonRF devices, a home control network can be simplified and most devices can be operated on LonWorks control network. Also, Indoor Positioning System (IPS) that can serve various location based services was implemented in uHome-net. Smart Badge of IPS, that is a special LonRF device, can measure the 3D location of objects in the indoor environment. In the uHome-net testbed, remote control service, cooking help service, wireless remote metering service, baby monitoring service and security & fire prevention service were realized. This research shows the vision of the ubiquitous home network that will be emerged in the near future.

A Study of Health & Disaster Monitoring Measurement using Ubiquitous Active Communication Digital Datalogger System for Railway Structures (유비쿼터스 기반 통신의 철도구조물에 대한 재난감지용 능동형 데이터로거 시스템 연구)

  • Lee, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.470-475
    • /
    • 2011
  • The objective of this study is the developement health & disaster monitoring measurement using ubiquitous active communication digital datalogger system for monitoring measurement of railway construction sites. For the replacement of current passive data communication, ubiquitous active communication digital datalogger system is studied for the first time with in a country. Therefore data communication method and analyzing program of automatic measurement data is developed for the global positioning automatic digital datalogger system. The results of this study will be using both real time automatic monitoring measurement and health & disaster monitoring measurement of railway structures.

  • PDF

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.297-302
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous computing environment and applications, for which Radio Frequency Identification(RFID) has been considered as a core technology. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and kcan be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in I-Dimensional space, the square in 2-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

Indoor Positioning System Using Fingerprinting Technique (Fingerprinting기법을 이용한 실내 위치측위시스템)

  • Nam, Doo-Hee;Han, Ho-Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • According to the ubiquitous trend, the needs for the context based application service have been increased. These services take on Location Based Service which is based on the current location of users. It is widely used that localization techniques use GPS or ground wave and more efficient and accurate methods have been studied. Recently, not only services which targeted outdoor but also services which targeted indoor, for example home services and facility guidance of the building come into the spotlight. In case of the outdoor positioning area, COTH (Commercial Off-The-Shelf) has been released and used but relatively it doesn't produce an outcome in the indoor positioning area. Therefore, this paper Proposes the indoor positioning technique using wireless LAN (Local Area Network) which is one of the widely used wireless communication technique. It analyzes the typical WLAN location positioning methodology has been studied and their advantage and disadvantage also suggests how to design and implement the specific WLAN positioning system. In addition, it suggests new methods that progress the accuracy of the existing systems and improve the efficient computation.

  • PDF

A STUDY ON CONTINUOUS POSITIONING METHOD USING INTERLOCKING RFID AND GPS

  • Song, Woo-Seok;Lee, Jung-Ho;Bea, Hwan-Sung;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.564-567
    • /
    • 2007
  • GPS(Global Positioning System) data has a high accuracy at outdoor positioning generally, but its accuracy decreases in the urban areas with dense buildings. Moreover insufficient number of satelllites prevent us GPS positioning at inside of buildings. To complement these shortcomings of GPS, RFID(Radio Frequency IDentification) has been studied on indoor positioning parts. In Ubiquitous environment, LBS(Location Based Service) which can be used anytime and anywhere is an essential component. We use kalman filter to estimate the real location in GPS and RFID handover area. This study's purpose is to make a continuous positioning system using interlocking RFID and GPS.

  • PDF