• Title/Summary/Keyword: Ub-specific protease

Search Result 3, Processing Time 0.016 seconds

Recombinant production of human glucagon-like peptide-1 mutant (인간 Glucagon-like Peptide-1 변이체의 재조합 생산)

  • Kim, Sung-Gun;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.237-243
    • /
    • 2014
  • Human Glucagon like peptide-1 (GLP-1) is an incretin hormone that promotes secretion of insulin. In order to eliminate the formation of the soluble aggregate, Ala19 in GLP-1 was substituted with Thr, resulting in a GLP-1 mutant GLP-1A19T. The gene synthesis of GLP-1A19T and the fusion of 6-lysine tagged ubiquitin gene were accomplished by using the overlap extension polymerase chain reaction. The ubiquitin fused GLP-1A19T (K6UbGLP-1A19T) is expressed as form of inclusion body with little formation of the soluble aggregation in recombinant E. coli. In order to produce K6UbGLP-1A19T in large amounts, fed-batch fermentation was carried out in a pH-stat feeding strategy. Maximum dry cell weight of 87.7 g/L and 20.4% of specific K6UbGLP-1A19T content were obtained. Solid-phase refolding using a cation exchanger was carried out to renature K6UbGLP-1A19T. The refolded K6UbGLP-1A19T aggregated little and was released GLP-1A19T by on-column cleavage with ubiquitin-specific protease-1. The molecular mass of GLP-1A19T showed an accurate agreement with its theoretical molecular mass.

A Novel Ubiqutin C-terminal Hydrolase (UCH-9) from Chick Skeletal Muscle: Its Purification and Charaterization

  • U, Seong-Gyun;Baek, Seong-Hui;Sin, Dong-Hun;Kim, Hye-Seon;Yu, Yeong-Jun;Jo, Jung-Myeong;Gang, Man-Sik;Jeong, Jin-Ha
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.323-328
    • /
    • 1997
  • We have previously shown that chick muscle extracts contained at least 10 different ubiquitin C-terminal hydrolases (UCHs). In the present studies, one of the enzymes, called UCH-9, was purified by conventional chromatographic procedures using $^{125}l$-labeled ubiquitin-${\alpha}$NH-MHISPPEPESEEEEE HYC (Ub-PESTc) as a substrate. The purified enzyme behaved as a 27-kDa protein under both denaturing and nondenaturing conditions, suggesting that it consists of a single polypeptide chain. It was maximally active at pHs between 7 and 8.5, but showed little or no activity at pH below 6 and above 10. Lice other UCHs, its activity was strongly inhibited by sulfhydryl blocking reagents, such as iodoacetamide, and by Ub-aldehyde. In addition to Ub-PESTc, UCH-9 hydrolyzed Ub-aNH-protein extensions, including Ub-${\alpha}NH$-carboxyl extension protein of 80 amino acids and Ubo-${\alpha}NH$-dihydrofolate reductase. However, this enzyme was not capable of generating free Ub from mono-Ub-${\varepsilon}NH$-protein conjugates and from branched poly-Ub chains that are ligated to proteins through ${\varepsilon}NH$-isopeptide bonds. This enzyme neither could hydrolyze poly-His-tagged di-Ub. These results suggest that UCH-9 may play an important role in production of free Ub and ribosomal proteins from their conjugates.

  • PDF

Structures of proteases for ubiqutin and ubiquitin-like modifiers

  • Ha, Byung-Hak;Kim, Eunice Eun-Kyeong
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.435-443
    • /
    • 2008
  • Post-translational modifiers can alter the function of proteins in many different ways. The conjugation of ubiquitin (Ub) and ubiqutin-like modifiers (Ubls) to proteins has been shown to be especially crucial in regulating a variety of cellular processes including the cell cycle, growth control, quality control, localization and many more. It is a highly dynamic process and involves a number of enzymes called E1, E2 and E3. Ub and Ubls are removed from the target proteins by deubiquitinating enzymes (DUBs) or Ubl-specific proteases (ULPs), thereby deconjugation can act as an additional level of control over the ubiquitin-conjugation system. In addition, DUBs and ULPs are responsible for activating Ub and Ubls from their inactive corresponding precursor forms. Here we review recent progress in molecular details of these deconjugating enzymes of Ubls.