References
- Ciechanover, A., Finley, D. and Varshavsky, A. (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57-66. https://doi.org/10.1016/0092-8674(84)90300-3
- Finley, D., Ciechanover, A. and Varshavsky, A. (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43-55. https://doi.org/10.1016/0092-8674(84)90299-X
- Hicke, L. (2001) A new ticket for entry into budding vesicles- ubiquitin. Cell 106, 527-530. https://doi.org/10.1016/S0092-8674(01)00485-8
- Huang, T. T. and D'Andrea, A. D. (2006) Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell Biol. 7, 323-334. https://doi.org/10.1038/nrm1908
- Di Fiore, P. P., Polo, S. and Hofmann, K. (2003) When ubiquitin meets ubiquitin receptors: a signalling connection. Nat. Rev. Mol. Cell Biol. 4, 491-497. https://doi.org/10.1038/nrm1124
- Hicke, L. and Dunn, R. (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol. 19, 141-172. https://doi.org/10.1146/annurev.cellbio.19.110701.154617
- Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. and Ashwell, J. D. (2006) Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation. Nat. Cell Biol. 8, 398-U58. https://doi.org/10.1038/ncb1384
- Jentsch, S. and Pyrowolakis, G. (2000) Ubiquitin and its kin: how close are the family ties? Trends in Cell Biol. 10, 335-342. https://doi.org/10.1016/S0962-8924(00)01785-2
- Korant, B. D., Blomstrom, D. C., Jonak, G. J. and Knight, E. Jr. (1984) Interferon-induced proteins. Purification and characterization of a 15,000-dalton protein from human and bovine cells induced by interferon. J. Biol. Chem. 259, 14835-14839.
- Narasimhan, J., Wang, M., Fu, Z., Klein, J. M., Haas, A. L. and Kim, J. J. (2005) Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J. Biol. Chem. 280, 27356-27365. https://doi.org/10.1074/jbc.M502814200
- Zhao, C., Denison, C., Huibregtse, J. M., Gygi, S. and Krug, R. M. (2005) Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Natl. Acad. Sci. U. S. A. 102, 10200-10205 https://doi.org/10.1073/pnas.0504754102
- Malakhova, O. A., Yan, M., Malakhov, M. P., Yuan, Y., Ritchie, K. J., Kim, K. I., Peterson, L. F., Shuai, K. and Zhang, D.E. (2003) Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 17, 455-460. https://doi.org/10.1101/gad.1056303
- Kumar, S., Yoshida, Y. and Noda, M. (1993) Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem. Biophys. Res. Commun. 195, 393-399. https://doi.org/10.1006/bbrc.1993.2056
- Hochstrasser, M. (1998) There's the Rub: a novel ubiquitin- like modification linked to cell cycle regulation. Genes Dev. 12, 901-907. https://doi.org/10.1101/gad.12.7.901
- Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T. and Lane, D. P. (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83-97. https://doi.org/10.1016/j.cell.2004.06.016
- Podust, V. N., Brownell, J. E., Gladysheva, T. B., Luo, R. S., Wang, C., Coggins, M. B., Pierce, J. W., Lightcap, E. S. and Chau, V. (2000) A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc. Natl. Acad. Sci. U. S. A. 97, 4579-4584. https://doi.org/10.1073/pnas.090465597
- M., Parent, L. A., Coggins, M. B., Pierce, J. W., Podust, V. N., Luo, R. S., Chau, V. and Palombella, V. J. (2000) Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol. Cell. Biol. 20, 2326-2333. https://doi.org/10.1128/MCB.20.7.2326-2333.2000
- Ohh, M., Kim, W. Y., Moslehi, J. J., Chen, Y., Chau, V., Read, M. A. and Kaelin, W. G., Jr. (2002) An intact NEDD8 pathway is required for Cullin-dependent ubiquitylation in mammalian cells. EMBO Rep. 3, 177-182. https://doi.org/10.1093/embo-reports/kvf028
- Hori, T., Osaka, F., Chiba, T., Miyamoto, C., Okabayashi, K., Shimbara, N., Kato, S. and Tanaka, K. (1999) Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18, 6829-6834. https://doi.org/10.1038/sj.onc.1203093
- Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T. and Lane, D. P. (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83-97. https://doi.org/10.1016/j.cell.2004.06.016
- Rassi, S., Schmidtke, G. and Grottrup, M. (2001) The ubiquitin-like protein FAT10 forms a covalent conjugates and induces apoptosis. J. Biol. Chem. 276, 35334-35443. https://doi.org/10.1074/jbc.M105139200
- Hopp, M. S., Kalveram, B., Rassi, S., Groettrup, M. and Schmidtke, G. (2005) FAT10, a ubiquitin-independent signal for proteasome degradation. Mol. Cell Biol. 25, 3483-3491. https://doi.org/10.1128/MCB.25.9.3483-3491.2005
- Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., Garcia-Wilson, E., Perkins, N. D. and Hay, R. T. (2003) P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043-1054. https://doi.org/10.1016/S1097-2765(03)00141-2
- Seeler, J. S. and Dejean, A. (2003) Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690-699. https://doi.org/10.1038/nrm1200
- Muller, S., Ledl, A. and Schmidt, D. (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23, 1998-2008. https://doi.org/10.1038/sj.onc.1207415
- Meluh, P. B. and Koshland, D. (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793-807. https://doi.org/10.1091/mbc.6.7.793
- Bohren, K. M., Nadkarni, V. J., Song, H., Gabbay, K. H. and Owerbach, D. (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J. Biol. Chem. 279, 27233-27238. https://doi.org/10.1074/jbc.M402273200
- Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. and Lima, C. D. (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin- conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345-356. https://doi.org/10.1016/S0092-8674(02)00630-X
- Sampson, D. A., Wang, M. and Matunis, M. J. (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664-21669. https://doi.org/10.1074/jbc.M100006200
- Ichimura, Y., Kirisako, T, Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida., I., Kominami, E., Ohsumi, M., Noda, T. and Ohsumi, Y. (2000) A ubiquitin- like system mediates protein lipidation. Nature 408, 488-492. https://doi.org/10.1038/35044114
- Ohsumi, Y. (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2, 211-216. https://doi.org/10.1038/35056522
- Komatsu, M., Chiba, T., Tatsumi, K., Iemura, S., Tanida, I., Okazaki, N., Ueno, T., Kominami, E., Natsume, T. and Tanaka, K. (2004) A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23, 1977-1986. https://doi.org/10.1038/sj.emboj.7600205
- Sasakawa, H., Sakata, E., Yamaguchi, Y., Komatsu, M., Tatsumi, K., Kominami, E., Tanaka, K. and Kato, K. (2006) Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochem. Biophys. Res. Commun. 343, 21-26. https://doi.org/10.1016/j.bbrc.2006.02.107
- Kang, S. H., Kim, G. R., Seong, M., Baek, S. H., Seol, J. H., Bang, O. S., Ovaa, H., Tatsumi, K., Komatsu, M., Tanaka, K. and Chung, C. H. (2007) Two novel ubiquitin- fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2. J. Biol. Chem. 282, 5256-5262. https://doi.org/10.1074/jbc.M610590200
- Love, K. R., Catic, A., Schlieker, C. and Ploegh, H. L. (2007) Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat. Chem. Biol. 3, 697-705. https://doi.org/10.1038/nchembio.2007.43
- Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K. and Bernards, R. (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786. https://doi.org/10.1016/j.cell.2005.11.007
- Hu, M., Li, P., Li, M., Li, W., Yao, T., Wu, J. W., Gu, W., Cohen, R. E. and Shi, Y. (2002) Crystal structure of a UBP-family deubiquitylating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041-1054. https://doi.org/10.1016/S0092-8674(02)01199-6
- Renatus, M., Parrado, S. G., D'Arcy, A., Eidhoff, U., Gerhartz, B., Hassiepen, U., Pierrat, B., Riedl, R., Vinzenz, D., Worpenberg, S. and Kroemer, M. (2006) Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 14, 1293-302. https://doi.org/10.1016/j.str.2006.06.012
- Avvakumov, G. V., Walker, J. R., Xue, S., Finerty, P. J. Jr., Mackenzie, F., Newman, E. M. and Dhe-Paganon, S. (2006) Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8). J. Biol. Chem. 281, 38061-38070. https://doi.org/10.1074/jbc.M606704200
- Hu, M., Li, P., Song, L., Jeffrey, P. D., Chenova, T. A., Wilkinson, K. D., Cohen, R. E. and Shi, Y. (2005) Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 24, 3747-3756. https://doi.org/10.1038/sj.emboj.7600832
- Ratia, K., Saikatendu, K. S., Santarsiero, B. D., Barretto, N., Baker, S. C., Stevens, R. C. and Mesecar, A. D. (2006) Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. U. S. A. 103, 5717-5722. https://doi.org/10.1073/pnas.0510851103
- Schlieker, C., Weihofen, W. A., Frijns, E., Kattenhorn, L. M., Gaudet, R. and Ploegh, H. L. (2007) Structure of a herpesvirus- encoded cysteine protease reveals a unique class of deubiquitinating enzymes. Mol. Cell 25, 677-687. https://doi.org/10.1016/j.molcel.2007.01.033
- Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D. and Hill, C. P. (1997) Crystal structure of a deubiquiitnating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 16, 3787-3796. https://doi.org/10.1093/emboj/16.13.3787
- Misaghi, S., Galardy, P. J., Meester W. J. N., Ovaa, H., Ploegh, H. L. and Gaudet R. (2005) Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J. Biol. Chem. 280, 1512-1520. https://doi.org/10.1074/jbc.M410770200
- Das, C., Hoang, Q. Q., Kreinbring, C. A., Luchansky, S. J., Meray, R. K., Ray, S. S., Lansbury, P. T., Ringe, D. and Petsko, G. A. (2006) Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCL-L1. Proc. Natl. Acad. Sci. U. S. A. 103, 4575-4680.
- Johnston, S. C, Riddle, S. M., Cohen, R. E. and Hill, C. P. (1999) Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18, 3877-3887. https://doi.org/10.1093/emboj/18.14.3877
- Nanao, M. H., Tcherniuk, S. O., Chroboczek, J., Dideberg, O., Dessen, A. and Balakirev, M. Y. (2004) Crystal structure of human otubain 2. EMBO Rep. 5, 783-788. https://doi.org/10.1038/sj.embor.7400201
- Komander, D. and Barford, D. (2008) Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409, 77-85. https://doi.org/10.1042/BJ20071399
- Messick,T. E., Russell, N. S., Iwata, A. J., Sarachan, K. L., Shiekhattar, R., Shanks, J. R., Reyes-Turcu, F. E., Wilkinson, K. D. and Marmorstein, R. (2008) Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. J. Biol. Chem. 283, 11038-11049. https://doi.org/10.1074/jbc.M704398200
- Doss-Pepe, E. W., Stenroos, E. S., Johnson, W. G. and Madura, K. (2003) Ataxin-3 interactions with rad23 and valosin- containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol. Cell Biol. 23, 6469-6483. https://doi.org/10.1128/MCB.23.18.6469-6483.2003
- Nicastro, G., Menon, R. P., Masino, L., Knowles, P. P., McDonald, N. Q. and Pastore, A. (2005) The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc. Natl. Acad. Sci. U. S. A. 102, 10493-10498. https://doi.org/10.1073/pnas.0501732102
- Mao, Y., Senic-Matuglia, F., Di Fiore, P. P., Polo, S., Hodsdon, M. E. and De Camilli, P. (2005) Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc. Natl. Acad. Sci. U. S. A. 102, 12700-12705. https://doi.org/10.1073/pnas.0506344102
- Verma, R., Aravind, L., Oania, R., McDonald, W.H., Yates, JR. 3rd., Koonin, E. V. and Deshaies, R. J. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615. https://doi.org/10.1126/science.1075898
- Ambroggio, X. I., Rees, D. C. and Deshaies, R. J. (2004) JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. 2, 113-118. https://doi.org/10.1371/journal.pbio.0020113
- Kurisu, G., Kai, Y. and Harada, S. (2000) Structure of the zinc-binding site in the crystal structure of a zinc endoprotease from Streptomyces caespitosus at 1 A resolution. J. Inorg. Biochem. 82, 225-228. https://doi.org/10.1016/S0162-0134(00)00136-7
- Sanches, M., Alves, B. S., Zanchin, N. I. and Guimaraes, B. G. (2007) The crystal structure of the human Mov34 MPN domain reveals a metal-free dimer. J. Mol. Biol. 370, 846-855. https://doi.org/10.1016/j.jmb.2007.04.084
- Pena, V., Liu, S., Bujnicki, J. M., Luhrmann, R. and Wahl, M. C. (2007) Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol. Cell. 25, 615-624. https://doi.org/10.1016/j.molcel.2007.01.023
- Yeh, E. T., Gong, L. and Kamitani, T. (2000) Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1-14. https://doi.org/10.1016/S0378-1119(00)00139-6
- Melchior, F., Schergaut, M. and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612-618. https://doi.org/10.1016/j.tibs.2003.09.002
- Di Bacco, A., Ouyang, J., Lee, H. Y., Catic, A., Ploegh, H. and Gill, G. (2006) The SUMO-specific protease SENP5 is required for cell division. Mol. Cell. Biol. 26, 4489-4498. https://doi.org/10.1128/MCB.02301-05
- Gong, L. and Yeh, E. T. (2006) Characterization of a family of nucleolar sumo-specific proteases with preference for sumo-2 or sumo-3. J. Biol. Chem. 281, 15869-15877. https://doi.org/10.1074/jbc.M511658200
- Li, S. J. and Hochstrasser, M. (1999) A new protease required for cell-cycle progression in yeast. Nature 398, 246-251. https://doi.org/10.1038/18457
- Li, S. J. and Hochstrasser, M. (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin- like Smt3 protein. Mol. Cell. Biol. 20, 2367-2377. https://doi.org/10.1128/MCB.20.7.2367-2377.2000
- Gan-Erdene, T., Nagamalleswari, K., Yin, L., Wu, K., Pan, Z. Q. and Wilkinson, K. D. (2003) Identification and characterization of DEN1, a deneddylase of the ULP family. J. Biol. Chem. 278, 28892-28900. https://doi.org/10.1074/jbc.M302890200
- Mendoza, H. M., Shen, L. N., Botting, C., Lewis, A., Chen, J., Ink, B. and Hay, R. T. (2003) NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J. Biol. Chem. 278, 25637-25643. https://doi.org/10.1074/jbc.M212948200
- Mossessova, E. and Lima, C. D. (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865-876. https://doi.org/10.1016/S1097-2765(00)80326-3
- Shen, L. N., Dong, C., Liu, H., Naismith, J. H. and Hay, R. T. (2006) The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem. J. 397, 279-288. https://doi.org/10.1042/BJ20052030
- Xu, Z., Chau, S. F., Lam, K. H., Chan, H. Y., Ng, T. B. and Au, S. W. (2006) Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease. Biochem. J. 398, 345-352. https://doi.org/10.1042/BJ20060526
- Shen, L., Tatham, M. H., Dong, C., Zagórska, A., Naismith, J. H. and Hay, R. T. (2006) SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat. Struct. Mol. Biol. 13, 1069-1077. https://doi.org/10.1038/nsmb1172
- Reverter, D. and Lima, C. D. (2004) A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 12, 1519-1531. https://doi.org/10.1016/j.str.2004.05.023
- Reverter, D. and Lima, C. D. (2006) Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat. Struct. Mol. Biol. 13, 1060-1068. https://doi.org/10.1038/nsmb1168
- Shen, L. N., Liu, H., Dong, C., Xirodimas, D., Naismith, J. H. and Hay, R. T. (2005) Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. EMBO J. 24, 1341-1351. https://doi.org/10.1038/sj.emboj.7600628
- Kumanomidou, T., Mizushima, T., Komatsu, M., Suzuki, A., Tanida, I., Sou, Y. S., Ueno, T., Kominami, E., Tanaka, K. and Yamane, T. (2006) The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome- forming modifiers. J. Mol. Biol. 355, 612-618. https://doi.org/10.1016/j.jmb.2005.11.018
- Sugawara, K., Suzuki, N. N., Fujioka, Y., Mizushima, N., Ohsumi, Y. and Inagaki, F. (2005) Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem. 280, 40058-40065. https://doi.org/10.1074/jbc.M509158200
- Ha, B. H., Ahn, H. C., Kang, S. H., Tanaka, K., Chung, C. H. and Kim, E. E. (2008) Structural basis for ubiquitin-fold modifier 1 (ufm1) processing by ufm1 speicific protease, UfSP1. J. Biol. Chem. 283, 14893-14900. https://doi.org/10.1074/jbc.M708756200
Cited by
- De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II vol.7, pp.11, 2016, https://doi.org/10.1038/cddis.2016.371
- Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: Emerging patterns and molecular principles vol.1782, pp.12, 2008, https://doi.org/10.1016/j.bbadis.2008.08.010
- Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites vol.9, pp.4, 2009, https://doi.org/10.1002/pmic.200800666
- Systematic Analysis of the Lysine Succinylome inCandida albicans vol.15, pp.10, 2016, https://doi.org/10.1021/acs.jproteome.6b00578
- Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system vol.41, pp.12, 2008, https://doi.org/10.5483/BMBRep.2008.41.12.852
- Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense vol.6, 2017, https://doi.org/10.7554/eLife.21465
- hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14 vol.33, pp.2, 2014, https://doi.org/10.1038/onc.2012.560
- Regulation and Cellular Roles of Ubiquitin-Specific Deubiquitinating Enzymes vol.78, pp.1, 2009, https://doi.org/10.1146/annurev.biochem.78.082307.091526
- Structure of Ubiquitin-fold Modifier 1-specific Protease UfSP2 vol.286, pp.12, 2011, https://doi.org/10.1074/jbc.M110.172171
- Manipulation of viral infection by deubiquitinating enzymes: new players in host–virus interactions vol.11, pp.11, 2016, https://doi.org/10.2217/fmb-2016-0091
- Proteasome system of protein degradation and processing vol.74, pp.13, 2009, https://doi.org/10.1134/S000629790913001X
- Polyglutamine diseases: The special case of ataxin-3 and Machado–Joseph disease vol.95, pp.1, 2011, https://doi.org/10.1016/j.pneurobio.2011.06.007
- The molecular determinants for distinguishing between ubiquitin and NEDD8 by USP2 vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02322-x
- Structural Analysis of a Viral Ovarian Tumor Domain Protease from the Crimean-Congo Hemorrhagic Fever Virus in Complex with Covalently Bonded Ubiquitin vol.85, pp.7, 2011, https://doi.org/10.1128/JVI.02496-10
- Diversity of Ubiquitin and ISG15 Specificity among Nairoviruses' Viral Ovarian Tumor Domain Proteases vol.87, pp.7, 2013, https://doi.org/10.1128/JVI.03252-12