DOI QR코드

DOI QR Code

Structures of proteases for ubiqutin and ubiquitin-like modifiers

  • Ha, Byung-Hak (Life Sciences Division, Korea Institute of Science and Technology, Seoul National University) ;
  • Kim, Eunice Eun-Kyeong (Life Sciences Division, Korea Institute of Science and Technology, Seoul National University)
  • Accepted : 2008.06.03
  • Published : 2008.06.30

Abstract

Post-translational modifiers can alter the function of proteins in many different ways. The conjugation of ubiquitin (Ub) and ubiqutin-like modifiers (Ubls) to proteins has been shown to be especially crucial in regulating a variety of cellular processes including the cell cycle, growth control, quality control, localization and many more. It is a highly dynamic process and involves a number of enzymes called E1, E2 and E3. Ub and Ubls are removed from the target proteins by deubiquitinating enzymes (DUBs) or Ubl-specific proteases (ULPs), thereby deconjugation can act as an additional level of control over the ubiquitin-conjugation system. In addition, DUBs and ULPs are responsible for activating Ub and Ubls from their inactive corresponding precursor forms. Here we review recent progress in molecular details of these deconjugating enzymes of Ubls.

Keywords

References

  1. Ciechanover, A., Finley, D. and Varshavsky, A. (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57-66. https://doi.org/10.1016/0092-8674(84)90300-3
  2. Finley, D., Ciechanover, A. and Varshavsky, A. (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43-55. https://doi.org/10.1016/0092-8674(84)90299-X
  3. Hicke, L. (2001) A new ticket for entry into budding vesicles- ubiquitin. Cell 106, 527-530. https://doi.org/10.1016/S0092-8674(01)00485-8
  4. Huang, T. T. and D'Andrea, A. D. (2006) Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell Biol. 7, 323-334. https://doi.org/10.1038/nrm1908
  5. Di Fiore, P. P., Polo, S. and Hofmann, K. (2003) When ubiquitin meets ubiquitin receptors: a signalling connection. Nat. Rev. Mol. Cell Biol. 4, 491-497. https://doi.org/10.1038/nrm1124
  6. Hicke, L. and Dunn, R. (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol. 19, 141-172. https://doi.org/10.1146/annurev.cellbio.19.110701.154617
  7. Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. and Ashwell, J. D. (2006) Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation. Nat. Cell Biol. 8, 398-U58. https://doi.org/10.1038/ncb1384
  8. Jentsch, S. and Pyrowolakis, G. (2000) Ubiquitin and its kin: how close are the family ties? Trends in Cell Biol. 10, 335-342. https://doi.org/10.1016/S0962-8924(00)01785-2
  9. Korant, B. D., Blomstrom, D. C., Jonak, G. J. and Knight, E. Jr. (1984) Interferon-induced proteins. Purification and characterization of a 15,000-dalton protein from human and bovine cells induced by interferon. J. Biol. Chem. 259, 14835-14839.
  10. Narasimhan, J., Wang, M., Fu, Z., Klein, J. M., Haas, A. L. and Kim, J. J. (2005) Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J. Biol. Chem. 280, 27356-27365. https://doi.org/10.1074/jbc.M502814200
  11. Zhao, C., Denison, C., Huibregtse, J. M., Gygi, S. and Krug, R. M. (2005) Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Natl. Acad. Sci. U. S. A. 102, 10200-10205 https://doi.org/10.1073/pnas.0504754102
  12. Malakhova, O. A., Yan, M., Malakhov, M. P., Yuan, Y., Ritchie, K. J., Kim, K. I., Peterson, L. F., Shuai, K. and Zhang, D.E. (2003) Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 17, 455-460. https://doi.org/10.1101/gad.1056303
  13. Kumar, S., Yoshida, Y. and Noda, M. (1993) Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem. Biophys. Res. Commun. 195, 393-399. https://doi.org/10.1006/bbrc.1993.2056
  14. Hochstrasser, M. (1998) There's the Rub: a novel ubiquitin- like modification linked to cell cycle regulation. Genes Dev. 12, 901-907. https://doi.org/10.1101/gad.12.7.901
  15. Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T. and Lane, D. P. (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83-97. https://doi.org/10.1016/j.cell.2004.06.016
  16. Podust, V. N., Brownell, J. E., Gladysheva, T. B., Luo, R. S., Wang, C., Coggins, M. B., Pierce, J. W., Lightcap, E. S. and Chau, V. (2000) A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc. Natl. Acad. Sci. U. S. A. 97, 4579-4584. https://doi.org/10.1073/pnas.090465597
  17. M., Parent, L. A., Coggins, M. B., Pierce, J. W., Podust, V. N., Luo, R. S., Chau, V. and Palombella, V. J. (2000) Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol. Cell. Biol. 20, 2326-2333. https://doi.org/10.1128/MCB.20.7.2326-2333.2000
  18. Ohh, M., Kim, W. Y., Moslehi, J. J., Chen, Y., Chau, V., Read, M. A. and Kaelin, W. G., Jr. (2002) An intact NEDD8 pathway is required for Cullin-dependent ubiquitylation in mammalian cells. EMBO Rep. 3, 177-182. https://doi.org/10.1093/embo-reports/kvf028
  19. Hori, T., Osaka, F., Chiba, T., Miyamoto, C., Okabayashi, K., Shimbara, N., Kato, S. and Tanaka, K. (1999) Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18, 6829-6834. https://doi.org/10.1038/sj.onc.1203093
  20. Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T. and Lane, D. P. (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83-97. https://doi.org/10.1016/j.cell.2004.06.016
  21. Rassi, S., Schmidtke, G. and Grottrup, M. (2001) The ubiquitin-like protein FAT10 forms a covalent conjugates and induces apoptosis. J. Biol. Chem. 276, 35334-35443. https://doi.org/10.1074/jbc.M105139200
  22. Hopp, M. S., Kalveram, B., Rassi, S., Groettrup, M. and Schmidtke, G. (2005) FAT10, a ubiquitin-independent signal for proteasome degradation. Mol. Cell Biol. 25, 3483-3491. https://doi.org/10.1128/MCB.25.9.3483-3491.2005
  23. Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., Garcia-Wilson, E., Perkins, N. D. and Hay, R. T. (2003) P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043-1054. https://doi.org/10.1016/S1097-2765(03)00141-2
  24. Seeler, J. S. and Dejean, A. (2003) Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690-699. https://doi.org/10.1038/nrm1200
  25. Muller, S., Ledl, A. and Schmidt, D. (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23, 1998-2008. https://doi.org/10.1038/sj.onc.1207415
  26. Meluh, P. B. and Koshland, D. (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793-807. https://doi.org/10.1091/mbc.6.7.793
  27. Bohren, K. M., Nadkarni, V. J., Song, H., Gabbay, K. H. and Owerbach, D. (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J. Biol. Chem. 279, 27233-27238. https://doi.org/10.1074/jbc.M402273200
  28. Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. and Lima, C. D. (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin- conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345-356. https://doi.org/10.1016/S0092-8674(02)00630-X
  29. Sampson, D. A., Wang, M. and Matunis, M. J. (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664-21669. https://doi.org/10.1074/jbc.M100006200
  30. Ichimura, Y., Kirisako, T, Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida., I., Kominami, E., Ohsumi, M., Noda, T. and Ohsumi, Y. (2000) A ubiquitin- like system mediates protein lipidation. Nature 408, 488-492. https://doi.org/10.1038/35044114
  31. Ohsumi, Y. (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2, 211-216. https://doi.org/10.1038/35056522
  32. Komatsu, M., Chiba, T., Tatsumi, K., Iemura, S., Tanida, I., Okazaki, N., Ueno, T., Kominami, E., Natsume, T. and Tanaka, K. (2004) A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23, 1977-1986. https://doi.org/10.1038/sj.emboj.7600205
  33. Sasakawa, H., Sakata, E., Yamaguchi, Y., Komatsu, M., Tatsumi, K., Kominami, E., Tanaka, K. and Kato, K. (2006) Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochem. Biophys. Res. Commun. 343, 21-26. https://doi.org/10.1016/j.bbrc.2006.02.107
  34. Kang, S. H., Kim, G. R., Seong, M., Baek, S. H., Seol, J. H., Bang, O. S., Ovaa, H., Tatsumi, K., Komatsu, M., Tanaka, K. and Chung, C. H. (2007) Two novel ubiquitin- fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2. J. Biol. Chem. 282, 5256-5262. https://doi.org/10.1074/jbc.M610590200
  35. Love, K. R., Catic, A., Schlieker, C. and Ploegh, H. L. (2007) Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat. Chem. Biol. 3, 697-705. https://doi.org/10.1038/nchembio.2007.43
  36. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K. and Bernards, R. (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786. https://doi.org/10.1016/j.cell.2005.11.007
  37. Hu, M., Li, P., Li, M., Li, W., Yao, T., Wu, J. W., Gu, W., Cohen, R. E. and Shi, Y. (2002) Crystal structure of a UBP-family deubiquitylating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041-1054. https://doi.org/10.1016/S0092-8674(02)01199-6
  38. Renatus, M., Parrado, S. G., D'Arcy, A., Eidhoff, U., Gerhartz, B., Hassiepen, U., Pierrat, B., Riedl, R., Vinzenz, D., Worpenberg, S. and Kroemer, M. (2006) Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 14, 1293-302. https://doi.org/10.1016/j.str.2006.06.012
  39. Avvakumov, G. V., Walker, J. R., Xue, S., Finerty, P. J. Jr., Mackenzie, F., Newman, E. M. and Dhe-Paganon, S. (2006) Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8). J. Biol. Chem. 281, 38061-38070. https://doi.org/10.1074/jbc.M606704200
  40. Hu, M., Li, P., Song, L., Jeffrey, P. D., Chenova, T. A., Wilkinson, K. D., Cohen, R. E. and Shi, Y. (2005) Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 24, 3747-3756. https://doi.org/10.1038/sj.emboj.7600832
  41. Ratia, K., Saikatendu, K. S., Santarsiero, B. D., Barretto, N., Baker, S. C., Stevens, R. C. and Mesecar, A. D. (2006) Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. U. S. A. 103, 5717-5722. https://doi.org/10.1073/pnas.0510851103
  42. Schlieker, C., Weihofen, W. A., Frijns, E., Kattenhorn, L. M., Gaudet, R. and Ploegh, H. L. (2007) Structure of a herpesvirus- encoded cysteine protease reveals a unique class of deubiquitinating enzymes. Mol. Cell 25, 677-687. https://doi.org/10.1016/j.molcel.2007.01.033
  43. Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D. and Hill, C. P. (1997) Crystal structure of a deubiquiitnating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 16, 3787-3796. https://doi.org/10.1093/emboj/16.13.3787
  44. Misaghi, S., Galardy, P. J., Meester W. J. N., Ovaa, H., Ploegh, H. L. and Gaudet R. (2005) Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J. Biol. Chem. 280, 1512-1520. https://doi.org/10.1074/jbc.M410770200
  45. Das, C., Hoang, Q. Q., Kreinbring, C. A., Luchansky, S. J., Meray, R. K., Ray, S. S., Lansbury, P. T., Ringe, D. and Petsko, G. A. (2006) Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCL-L1. Proc. Natl. Acad. Sci. U. S. A. 103, 4575-4680.
  46. Johnston, S. C, Riddle, S. M., Cohen, R. E. and Hill, C. P. (1999) Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18, 3877-3887. https://doi.org/10.1093/emboj/18.14.3877
  47. Nanao, M. H., Tcherniuk, S. O., Chroboczek, J., Dideberg, O., Dessen, A. and Balakirev, M. Y. (2004) Crystal structure of human otubain 2. EMBO Rep. 5, 783-788. https://doi.org/10.1038/sj.embor.7400201
  48. Komander, D. and Barford, D. (2008) Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409, 77-85. https://doi.org/10.1042/BJ20071399
  49. Messick,T. E., Russell, N. S., Iwata, A. J., Sarachan, K. L., Shiekhattar, R., Shanks, J. R., Reyes-Turcu, F. E., Wilkinson, K. D. and Marmorstein, R. (2008) Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. J. Biol. Chem. 283, 11038-11049. https://doi.org/10.1074/jbc.M704398200
  50. Doss-Pepe, E. W., Stenroos, E. S., Johnson, W. G. and Madura, K. (2003) Ataxin-3 interactions with rad23 and valosin- containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol. Cell Biol. 23, 6469-6483. https://doi.org/10.1128/MCB.23.18.6469-6483.2003
  51. Nicastro, G., Menon, R. P., Masino, L., Knowles, P. P., McDonald, N. Q. and Pastore, A. (2005) The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc. Natl. Acad. Sci. U. S. A. 102, 10493-10498. https://doi.org/10.1073/pnas.0501732102
  52. Mao, Y., Senic-Matuglia, F., Di Fiore, P. P., Polo, S., Hodsdon, M. E. and De Camilli, P. (2005) Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc. Natl. Acad. Sci. U. S. A. 102, 12700-12705. https://doi.org/10.1073/pnas.0506344102
  53. Verma, R., Aravind, L., Oania, R., McDonald, W.H., Yates, JR. 3rd., Koonin, E. V. and Deshaies, R. J. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615. https://doi.org/10.1126/science.1075898
  54. Ambroggio, X. I., Rees, D. C. and Deshaies, R. J. (2004) JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. 2, 113-118. https://doi.org/10.1371/journal.pbio.0020113
  55. Kurisu, G., Kai, Y. and Harada, S. (2000) Structure of the zinc-binding site in the crystal structure of a zinc endoprotease from Streptomyces caespitosus at 1 A resolution. J. Inorg. Biochem. 82, 225-228. https://doi.org/10.1016/S0162-0134(00)00136-7
  56. Sanches, M., Alves, B. S., Zanchin, N. I. and Guimaraes, B. G. (2007) The crystal structure of the human Mov34 MPN domain reveals a metal-free dimer. J. Mol. Biol. 370, 846-855. https://doi.org/10.1016/j.jmb.2007.04.084
  57. Pena, V., Liu, S., Bujnicki, J. M., Luhrmann, R. and Wahl, M. C. (2007) Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol. Cell. 25, 615-624. https://doi.org/10.1016/j.molcel.2007.01.023
  58. Yeh, E. T., Gong, L. and Kamitani, T. (2000) Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1-14. https://doi.org/10.1016/S0378-1119(00)00139-6
  59. Melchior, F., Schergaut, M. and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612-618. https://doi.org/10.1016/j.tibs.2003.09.002
  60. Di Bacco, A., Ouyang, J., Lee, H. Y., Catic, A., Ploegh, H. and Gill, G. (2006) The SUMO-specific protease SENP5 is required for cell division. Mol. Cell. Biol. 26, 4489-4498. https://doi.org/10.1128/MCB.02301-05
  61. Gong, L. and Yeh, E. T. (2006) Characterization of a family of nucleolar sumo-specific proteases with preference for sumo-2 or sumo-3. J. Biol. Chem. 281, 15869-15877. https://doi.org/10.1074/jbc.M511658200
  62. Li, S. J. and Hochstrasser, M. (1999) A new protease required for cell-cycle progression in yeast. Nature 398, 246-251. https://doi.org/10.1038/18457
  63. Li, S. J. and Hochstrasser, M. (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin- like Smt3 protein. Mol. Cell. Biol. 20, 2367-2377. https://doi.org/10.1128/MCB.20.7.2367-2377.2000
  64. Gan-Erdene, T., Nagamalleswari, K., Yin, L., Wu, K., Pan, Z. Q. and Wilkinson, K. D. (2003) Identification and characterization of DEN1, a deneddylase of the ULP family. J. Biol. Chem. 278, 28892-28900. https://doi.org/10.1074/jbc.M302890200
  65. Mendoza, H. M., Shen, L. N., Botting, C., Lewis, A., Chen, J., Ink, B. and Hay, R. T. (2003) NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J. Biol. Chem. 278, 25637-25643. https://doi.org/10.1074/jbc.M212948200
  66. Mossessova, E. and Lima, C. D. (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865-876. https://doi.org/10.1016/S1097-2765(00)80326-3
  67. Shen, L. N., Dong, C., Liu, H., Naismith, J. H. and Hay, R. T. (2006) The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem. J. 397, 279-288. https://doi.org/10.1042/BJ20052030
  68. Xu, Z., Chau, S. F., Lam, K. H., Chan, H. Y., Ng, T. B. and Au, S. W. (2006) Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease. Biochem. J. 398, 345-352. https://doi.org/10.1042/BJ20060526
  69. Shen, L., Tatham, M. H., Dong, C., Zagórska, A., Naismith, J. H. and Hay, R. T. (2006) SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat. Struct. Mol. Biol. 13, 1069-1077. https://doi.org/10.1038/nsmb1172
  70. Reverter, D. and Lima, C. D. (2004) A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 12, 1519-1531. https://doi.org/10.1016/j.str.2004.05.023
  71. Reverter, D. and Lima, C. D. (2006) Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat. Struct. Mol. Biol. 13, 1060-1068. https://doi.org/10.1038/nsmb1168
  72. Shen, L. N., Liu, H., Dong, C., Xirodimas, D., Naismith, J. H. and Hay, R. T. (2005) Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. EMBO J. 24, 1341-1351. https://doi.org/10.1038/sj.emboj.7600628
  73. Kumanomidou, T., Mizushima, T., Komatsu, M., Suzuki, A., Tanida, I., Sou, Y. S., Ueno, T., Kominami, E., Tanaka, K. and Yamane, T. (2006) The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome- forming modifiers. J. Mol. Biol. 355, 612-618. https://doi.org/10.1016/j.jmb.2005.11.018
  74. Sugawara, K., Suzuki, N. N., Fujioka, Y., Mizushima, N., Ohsumi, Y. and Inagaki, F. (2005) Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem. 280, 40058-40065. https://doi.org/10.1074/jbc.M509158200
  75. Ha, B. H., Ahn, H. C., Kang, S. H., Tanaka, K., Chung, C. H. and Kim, E. E. (2008) Structural basis for ubiquitin-fold modifier 1 (ufm1) processing by ufm1 speicific protease, UfSP1. J. Biol. Chem. 283, 14893-14900. https://doi.org/10.1074/jbc.M708756200

Cited by

  1. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II vol.7, pp.11, 2016, https://doi.org/10.1038/cddis.2016.371
  2. Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: Emerging patterns and molecular principles vol.1782, pp.12, 2008, https://doi.org/10.1016/j.bbadis.2008.08.010
  3. Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites vol.9, pp.4, 2009, https://doi.org/10.1002/pmic.200800666
  4. Systematic Analysis of the Lysine Succinylome inCandida albicans vol.15, pp.10, 2016, https://doi.org/10.1021/acs.jproteome.6b00578
  5. Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system vol.41, pp.12, 2008, https://doi.org/10.5483/BMBRep.2008.41.12.852
  6. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense vol.6, 2017, https://doi.org/10.7554/eLife.21465
  7. hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14 vol.33, pp.2, 2014, https://doi.org/10.1038/onc.2012.560
  8. Regulation and Cellular Roles of Ubiquitin-Specific Deubiquitinating Enzymes vol.78, pp.1, 2009, https://doi.org/10.1146/annurev.biochem.78.082307.091526
  9. Structure of Ubiquitin-fold Modifier 1-specific Protease UfSP2 vol.286, pp.12, 2011, https://doi.org/10.1074/jbc.M110.172171
  10. Manipulation of viral infection by deubiquitinating enzymes: new players in host–virus interactions vol.11, pp.11, 2016, https://doi.org/10.2217/fmb-2016-0091
  11. Proteasome system of protein degradation and processing vol.74, pp.13, 2009, https://doi.org/10.1134/S000629790913001X
  12. Polyglutamine diseases: The special case of ataxin-3 and Machado–Joseph disease vol.95, pp.1, 2011, https://doi.org/10.1016/j.pneurobio.2011.06.007
  13. The molecular determinants for distinguishing between ubiquitin and NEDD8 by USP2 vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02322-x
  14. Structural Analysis of a Viral Ovarian Tumor Domain Protease from the Crimean-Congo Hemorrhagic Fever Virus in Complex with Covalently Bonded Ubiquitin vol.85, pp.7, 2011, https://doi.org/10.1128/JVI.02496-10
  15. Diversity of Ubiquitin and ISG15 Specificity among Nairoviruses' Viral Ovarian Tumor Domain Proteases vol.87, pp.7, 2013, https://doi.org/10.1128/JVI.03252-12