References
- Fairlamb, A. H. and Cerami, A. (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annu. Rev. Microbiol. 46, 695-729. https://doi.org/10.1146/annurev.mi.46.100192.003403
- Meister, A. (1989) Glutathione; Chemical, Biochemical and Medical Aspects, In: Dolphin, D., Poulson, R. and Avramovic, O., (eds). John Wiley, New York: 367-474.
- Ghisla, S. K. and Massey, V. (1989) Mechanism of flavoprotein- catalyzed reactions. Eur. J. Biochem. 181, 1-17. https://doi.org/10.1111/j.1432-1033.1989.tb14688.x
- Borges, A., Cunningham, M. L., Tovar, J. and Fairlamb, A. H. (1995) Site-directed mutagenesis of the redox-active cysteines of Trypanosoma cruzi trypanothione reductase. Eur. J. Biochem. 228, 745-752. https://doi.org/10.1111/j.1432-1033.1995.tb20319.x
- Muller, S., Liebau, E., Walter, R. D. and Krauth-Siegel, R. L. (2003) Thiol-based redox metabolism of protozoan parasites. Trends Parasitol. 19, 320-328. https://doi.org/10.1016/S1471-4922(03)00141-7
- Hunter, W. N., Bailey, S., Habash, J., Harrop, S. J., Helliwell, J. R., Aboagye-Kwarteng, T., Smith, K. and Fairlamb, A. H. (1992) Active site of trypanothione reductase: A target for rational drug design. J. Mol. Biol. 227, 322-333. https://doi.org/10.1016/0022-2836(92)90701-K
- Swindells, M. B. (1995) A procedure for the automatic determination of hydrophobic cores in protein structures. Protein Sci. 4, 93-102.
- Swindells, M. B. (1995) A procedure for detecting structural domains in proteins. Protein Sci. 4, 103-112. https://doi.org/10.1002/pro.5560040113
- Zhang, Y., Bond, C. S., Bailey, S., Cunningham, M. L., Fairlamb, A. H. and Hunter, W. N. (1996) The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 A resolution. Protein Sci. 5, 52-61. https://doi.org/10.1002/pro.5560050107
- Bailey, S., Fairlamb, A. H., Hunter, W. N. (1994) Structure of trypanothione reductase from Crithidia fasciculata at 2.6 A resolution; Enzyme-NADP interactions at 2.8 A resolution. Acta. Cryst. B50, 139-154
- Henderson, G. B., Murgolo, N. J., Kuriyan, J., Osapay, K., Kominos, D., Berry, A., Scrutton, N. S., Hinchliffe, N. W., Perham, R. N., Cerami, A. (1991) Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction. Proc. Natl. Acad. Sci. U.S.A. 88, 8769-8773. https://doi.org/10.1073/pnas.88.19.8769
- Bond, C. S., Zhang, Y., Berriman, M., Cunningham, M. L., Fairlamb, A. H., Hunter, W. N. (1999) Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 7, 81-89. https://doi.org/10.1016/S0969-2126(99)80011-2
- Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, Z., Miller, W., Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Sali, A. and Blundell, T. L. (1995) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815. https://doi.org/10.1006/jmbi.1993.1626
- Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thronton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291. https://doi.org/10.1107/S0021889892009944
- Ramachandran, G. N., Sasisekharan, V. (1968) Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283-438. https://doi.org/10.1016/S0065-3233(08)60402-7
Cited by
- Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite vol.110, pp.1, 2012, https://doi.org/10.1007/s00436-011-2498-x
- Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase ofLeishmania infantum 2010, https://doi.org/10.1002/jcc.21538
- Evaluation of selected antitumor agents as subversive substrate and potential inhibitor of trypanothione reductase: an alternative approach for chemotherapy of Leishmaniasis vol.352, pp.1-2, 2011, https://doi.org/10.1007/s11010-011-0762-0
- Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: A comparative analysis for Leishmaniasis treatment vol.55, 2015, https://doi.org/10.1016/j.jmgm.2014.11.002
- Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, ofLeishmania donovani vol.34, pp.11, 2016, https://doi.org/10.1080/07391102.2015.1116411
- Studies on ornithine decarboxylase of Leishmania donovani: structure modeling and inhibitor docking vol.22, pp.1, 2013, https://doi.org/10.1007/s00044-012-0035-9
- Quantitative Proteome Analysis of Leishmania donovani under Spermidine Starvation vol.11, pp.4, 2016, https://doi.org/10.1371/journal.pone.0154262
- Footprinting of Inhibitor Interactions ofIn SilicoIdentified Inhibitors of Trypanothione Reductase ofLeishmaniaParasite vol.2012, 2012, https://doi.org/10.1100/2012/963658
- Purification, biochemical characterization and Insilico modeling of α-amylase from Vicia faba vol.234, 2017, https://doi.org/10.1016/j.molliq.2017.03.058
- Identification of active site residues of Fenugreek β-amylase: Chemical modification and in silico approach vol.83, 2014, https://doi.org/10.1016/j.plaphy.2014.08.005
- Leishmania–macrophage interactions: Insights into the redox biology vol.51, pp.2, 2011, https://doi.org/10.1016/j.freeradbiomed.2011.05.011
- In Silico Structural, Virtual Screening and Docking Studies of Human Cytochrome P450 2A7 Protein vol.7, pp.2, 2015, https://doi.org/10.1007/s12539-015-0007-0
- In silico prediction and characterization of 3D structure and binding properties of catalase from the commercially important crab, Scylla serrata vol.3, pp.2, 2011, https://doi.org/10.1007/s12539-011-0071-z
- Classification and structural analyses of mutational landscapes in hemochromatosis factor E protein: A protein defective in the hereditary hemochromatosis vol.6, 2017, https://doi.org/10.1016/j.genrep.2016.12.007
- Understanding the importance of conservative hypothetical protein LdBPK_070020 in Leishmania donovani and its role in subsistence of the parasite vol.596, 2016, https://doi.org/10.1016/j.abb.2016.02.025
- Rational Approaches for Drug Designing Against Leishmaniasis vol.160, pp.8, 2010, https://doi.org/10.1007/s12010-009-8764-z
- Mitogen-activated protein kinase 4 of Leishmania parasite as a therapeutic target vol.45, pp.12, 2010, https://doi.org/10.1016/j.ejmech.2010.09.020
- Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein vol.104, 2017, https://doi.org/10.1016/j.ijbiomac.2017.06.105
- Fresh insights into the pyrimidine metabolism in the trypanosomatids vol.11, pp.1, 2018, https://doi.org/10.1186/s13071-018-2660-8