• Title/Summary/Keyword: UWB System

Search Result 522, Processing Time 0.031 seconds

Performance Analysis of TH-BPPM and TH-BPAM UWB System and the Applications in Data and Image Transmission

  • Sung, Tae-Kyung
    • Journal of Navigation and Port Research
    • /
    • v.31 no.2
    • /
    • pp.159-163
    • /
    • 2007
  • In this paper, we mainly analyze the performance of two ultra wideband communication systems, the classical Time Hopping Binary Pulse Position Modulation (TH-BPPM) UWB system and the Time Hopping Bipolar Pulse Amplitude Modulation (TH-BPAM) UWB system. The performance of TH-BPPM and TH-BPAM is analyzed in detail under an ideal AWGN channel and a correlation receiver. We use the power spectral density function to get the expression of BER of these two UWB systems. It yields simple and exact formulas relating the performance to the system parameters. The analysis shows that TH-BPPM suffers performance degradation with respect to TH-BPAM. Furthermore, we give the computer simulation of both data and image transmission and our simulation results also prove our theoretical analysis.

RF Front-End Module Design of UWB Radars for Vehicle (차량용 UWB 레이더의 RF front-end 모듈 설계)

  • Park, Chi-Ho;Kim, Tae-Gyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.11
    • /
    • pp.61-68
    • /
    • 2008
  • In this paper, we propose a RF front-end developments for vehicle UWB radar systems. UWB systems have a very narrow pulse width that is below 1ns. Therefore, UWB is designed to have broadband quality of low power several GHz and must coexist with the radio communication system. UWB's advantages include high channel capacity and data rate, because precise resolution for multi-path can easily position estimate and Rake receiver. Also, UWB has low interference because it displays broadband quality of low power. Positioning is made possible by short range accuracy, which can reduce the expense of system design. An RF front-end module is designed using the DCR(Direct ConveRsion) method and is composed in RF for vehicles at a low-cost.

Performance analysis of TR, DTR and PRM UWB systems in frequency selective channel (주파수 선택적 채널에서의 TR, DTR과 PRM UWB 통신 시스템 성능분석)

  • Woo Seon-Keol;Choi Ho-Seon;Yang Hoon-Gee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.45-54
    • /
    • 2006
  • The UWB signal distortion in frequency selective channel has made it difficult to implement the channel estimator and the synchronizer of the UWB receiver. In this paper, we examine the performances of TR(Transmitted Reference) and DTR(Differential TR) UWB which use either reference pulse or differential method to estimate the channels. we also propose a FSK-based PRM(Pulse Repetition Modulation) UWB system as an another form of UWB system which is advantageous in frequency selective channel. Finally, resorting to statistical analysis, we examine the noise effect due to noisy reference at an auto-correlation(AcR) receiver. moreover, SNR dependance of the integration length in the AcR receiver is also investigated.

  • PDF

UWB WBAN Receiver for Real Time Location System (위치 인식이 가능한 WBAN 용 UWB 수신기)

  • Ha, Jong Ok;Park, Myung Chul;Jung, Seung Hwan;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.98-104
    • /
    • 2013
  • This paper presents a WBAN UWB receiver circuit for RTLS(real time location system) and wireless data communication. The UWB receiver is designed to OOK modulation for energy detection. The UWB receiver is designed for sub-sampling techniques using 4bit ADC and DLL.The proposed UWB receiver is designed in $0.18{\mu}m$ CMOS and consumes 61mA with a 1.8V supply voltage. The UWB receiver achieves a sensitivity of -85.7 dBm, a RF front-end gain of 42.1 dB, a noise figure of 3.88 dB and maximum sensing range of 4 meter.

Calculation of UWB Communication System Capacity with Timing litter (타이밍 지터를 고려한 UWB 통신 시스템 용량 계산)

  • 박장우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.767-773
    • /
    • 2004
  • An UWB communication system are a promising communication technique suitable for the current trends, which are requesting communication methods with the high throughputs and very high speed. A key feature of UWB communication systems is the very narrow pulse used in transmitting the data and PPM(Pulse Position Modulation) for modulating the data. So, the timing accuracy is very important. It is very important to accurately analyze the effect of the timing jitter on the performance of UWB communication systems. In this paper, the methods of analyzing the timing jitter effects on UWB communication systems are introduced. In particular, the channel capacities with timing jitter are calculated including the multiuser access interference.

Performance of M-ary Impulse Communications System over AWGN Channels (AWGN 채널에서 M진 임펄스 통신의 성능 분석)

  • 김동호;백승선;문용규;강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.405-409
    • /
    • 2002
  • Recently, the FCC commissioners approved limited uses of UWB, and have promised to review the standards to explore the potential of more flexible standards and to address the operation of additional types of UWB operations and technology. In this paper we study performances of UWB communication system according to M-ary schemes with BCH code. And under the AWGN channel, we analysis and compare error probability, the number of M-ary schemes to the two methods that pulse position modulation and pulse amplitude modulation.

Frequency-domain Based BPM-UWB Receiver with Channel Compensation (다중경로 채널을 보상하는 주파수 영역 기반 BPM-UWB 수신기)

  • Choi, Ho-Seon;Yang, Hoon-Gee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.84-91
    • /
    • 2008
  • In this paper, we propose a Sequency domain based BPM-UWB receiver compensating for distortion in the multi-path channel. We give a mathematical derivation for the proposed receiver which exploits a matched filter theory for optimum reception. We also analyze the system performance and present the simulation results that show the performance enhancement of the proposed system.

  • PDF

A Study of Limitation of Service Area by UWB Transmission Jamming in Broadcasting Communication System (방송통신 시스템에서 UWB 전파가 서비스에 미치는 영향에 관한 연구)

  • Park, No-Jin
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 2007
  • In this paper, UWB system did research about effect that interference effect with neighborhood single equipment or group equipment gets in broadcasting communication service. For this, 2.6425GHz SDMB(Satellite Digital Multimedia Broadcasting) that a special of electric wave interference is near frequency-band including interference of signal by unnecessary radiation level that is radiated in UWB system, and degree of 3.4125GHz broadcasting relay net that is In-band frequency-band and interference effect that get in service analyzed comparison and, modulation of broadcasting relay net and interference measurement equipment used Impulse and OFDM methods. Impulse method was $BER\;=\;1{\times}\;10^{-4}$ that broadcasting signal receiption is possible at 1.4m point because interference effect happens from 2m point in SDMB system, and it was $BER\;=\;1{\times}\;10^{-4}$ that OFDM method receives interference effect from 0.8m point and broadcasting signal receiption is possible at 0.5m point. Also, about Gap-Filler center frequency, In case of space interval more than 0.01m, there was no interference effect. Therefore, for the electric wave of UWB system that is small output applies to system without interference effect in broadcasting communication service, confirmed that UWB system of OFDM method is less interference effect than UWB system of Impulse method.

  • PDF

A 3 ~ 5 GHz CMOS UWB Radar Chip for Surveillance and Biometric Applications

  • Lee, Seung-Jun;Ha, Jong-Ok;Jung, Seung-Hwan;Yoo, Hyun-Jin;Chun, Young-Hoon;Kim, Wan-Sik;Lee, Noh-Bok;Eo, Yun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.238-246
    • /
    • 2011
  • A 3-5 GHz UWB radar chip in 0.13 ${\mu}m$ CMOS process is presented in this paper. The UWB radar transceiver for surveillance and biometric applications adopts the equivalent time sampling architecture and 4-channel time interleaved samplers to relax the impractical sampling frequency and enhance the overall scanning time. The RF front end (RFFE) includes the wideband LNA and 4-way RF power splitter, and the analog signal processing part consists of the high speed track & hold (T&H) / sample & hold (S&H) and integrator. The interleaved timing clocks are generated using a delay locked loop. The UWB transmitter employs the digitally synthesized topology. The measured NF of RFFE is 9.5 dB in 3-5 GHz. And DLL timing resolution is 50 ps. The measured spectrum of UWB transmitter shows the center frequency within 3-5 GHz satisfying the FCC spectrum mask. The power consumption of receiver and transmitter are 106.5 mW and 57 mW at 1.5 V supply, respectively.

Performance Analysis of M-ary Multiple Access UWB System Using Modified Hermite Polynomial Pulses (Modified Hermite Polynomial 펄스들을 사용하는 M진 다중접속 UWB 시스템의 성능 분석)

  • Hwang, Jun-Hyeok;Kim, Suk-Chan;Park, Dong-Chan;Kim, Byoung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.909-916
    • /
    • 2008
  • In this paper, we propose and analyze M-ary pulse order time hopping multiple access ultra wideband (PO-THMA UWB) system using modified Hermite polynomial (MHP). The MHP pulses have a mutually orthogonal property between different ordered pulses and that property makes simultaneous transmission at the same time slot regardless of collision in the THMA-UWB system. Therefore, we derive the cross-correlation furlction of MHP pulses and analyze the BER of the proposed system and show that the BER performance and the transmission capacity are improved dramatically when compared with those of conventional THMA-UWB system.