• Title/Summary/Keyword: UWB(Ultra wideband)

Search Result 393, Processing Time 0.029 seconds

Analysis on the Power Spectral Density of Ultra Wideband(UWB) Communication System (초광대역 통신 시스템의 전력 스펙트럼 밀도 분석)

  • Lee, Jung-Suk;Kim, Jong-Han;Kim, Yoo-Chang;Kim, Jung-Sun;Kim, Won-Hoo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.10
    • /
    • pp.34-40
    • /
    • 2001
  • Ultra Wide Band (UWB) system uses wide band signal, which power spectral density is over all band, It likes as a noise floor, so UWB system can be used without interfering with other communication system. For the first time, we adopted Rayleigh mono pulse antipodal signal which had symmetric characteristic and zero mean. With the power spectral density using stochastic process, we knew that the antipodal signaling scheme removed discrete spectrum and concluded that this had much better spectral suppression, probability of error and data rate than PPM (Pulse Positioning Modulation).

  • PDF

Design of a Pot-Shaped Monopole Antenna with Dual Band Notched Characteristics for UWB Application

  • Mok, Kwang Yun;Rhee, Young Chul;Yoon, Joong Han
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • A compact planar microstrip-fed ultra-wideband (UWB) antenna with a dual band-notched for UWB application is presented and analyzed. By inserting a U-shaped slot and inverted U-shaped slot into the pot-shaped radiator, two notched bands are achieved. By optimizing the width and length of the U-shaped slots and inverted U-shaped slot, a desired bandwidth of voltage standing wave ratio (VSWR) less than 2.0 can be achieved, ranging from UWB bands with notched dual bands. The proposed antenna is fabricated on an inexpensive FR-4 substrate with overall dimensions of $28.0mm{\times}39.5mm$. The measured results confirm that the proposed antenna covers from 1.775 to over 13.075 GHz with two rejection bands of around 3.325-3.925 GHz and 5.3125-6.025 GHz. In addition, the proposed antenna showed good radiation characteristics and gains in the UWB bands.

Design of the TDMG pulse generator for ultra-wideband systems (UWB 시스템을 위한 TDMG 펄스 발생기의 설계)

  • Park Jin-Hwan;Bae Bag Geun;Ko Young Eun;Bang Sung Il
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.27-30
    • /
    • 2004
  • This paper has been designed the TDMG(Time Delay Multiple Gaussian) pulse generator for UWB systems and analyzed the characteristics of UWB impulse. Composite two equal Gaussian pulses in a difference time lag, and then investigated TDMG pulse and modeled mathematically. Designed the TDMG pulse generator by ADS(Advanced Design System) to embody by using actual element with such mathematical model. As well as, this paper finally proved an excellence of the TDMG pulse generator by performing analysis through simulation.

  • PDF

Feasibility Study for the Development of a Device for Detecting Pathological Tissues (병리학적 조직 진단장치 개발에 대한 타당성 분석 연구)

  • Ko, Chea-Ok;Park, Min-Young;Pack, Jeong-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.421-424
    • /
    • 2005
  • X-ray is currently most effective method in detecting small malignant breast tumors but has the several problems due to suppressing breast, ionizing radiation and not detecting small cancer. In this paper, a new method is proposed by using dielectric characteristics of pathological tissues and time delay of backscattered response. We have developed a detection algorithm and verified it by numerical simulation and measurement for a prototype system. For a prototype system, we have fabricated experimental model(artificial breast with a cancer) and UWB(ultra-wideband) antenna. The results of the measurement simulation show an excellent detection capability of a cancer tissue. It is found that a good UWB antenna is a key element of such detection system. Further study is ongoing to develop a commercial system.

  • PDF

Accurate Heartbeat Frequency Extraction Method using UWB Impulse Radar

  • Cho, Hui-Sup;Park, Young-Jin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.246-252
    • /
    • 2017
  • Non-invasive and non-restrictive methods for measuring the physiological functions of the human body are useful for health care, security, and surveillance. In this paper, a new method that extracts human heartbeat information by utilizing ultra-wideband (UWB) impulse radar is proposed. The amplitude spectra of received radar pulses reflected from the human body are accumulated at specific time intervals, and chirp z-transform (CZT) is used to extract the heartbeat frequency from the amplitude spectra. The heartbeat frequency can be extracted with high-frequency resolution in the frequency band of the heartbeat of interest using CZT. Experimental results to verify the performance of the proposed method show that a highly accurate extraction of the heartbeat frequency is possible using this method.

High-Robust Relaxation Oscillator with Frequency Synthesis Feature for FM-UWB Transmitters

  • Zhou, Bo;Wang, Jingchao
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.202-207
    • /
    • 2015
  • A CMOS relaxation oscillator, with high robustness over process, voltage and temperature (PVT) variations, is designed in $0.18{\mu}m$ CMOS. The proposed oscillator, consisting of full-differential charge-discharge timing circuit and switched-capacitor based voltage-to-current conversion, could be expanded to a simple open-loop frequency synthesizer (FS) with output frequency digitally tuned. Experimental results show that the proposed oscillator conducts subcarrier generation for frequency-modulated ultra-wideband (FM-UWB) transmitters with triangular amplitude distortion less than 1%, and achieves frequency deviation less than 8% under PVT and phase noise of -112 dBc/Hz at 1 MHz offset frequency. Under oscillation frequency of 10.5 MHz, the presented design has the relative FS error less than 2% for subcarrier generation and the power dissipation of 0.6 mW from a 1.8 V supply.

Spectrum Analysis of UWB Radar Transmitter for Short Range Automobile Applications (단거리 차량용 초광대역 레이더 송신기의 스펙트럼 분석)

  • Ko, Seok J.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, we propose structures and power spectral densities of UWB radar transmitters of Short Range Automobile. While the conventional transmitters did not consider interferences from self and other automobiles, the proposed method of this paper can minimize interferences. First, we compare a structure of the proposed method with pulse train and pulse compression method. Then, by using mathematical analysis and computer simulations, we show that the proposed method is superior to others. Also we can set proper parameters in UWB radar's transmitter through the numerical method of mathematical results.

A High-Speed 2-Parallel Radix-$2^4$ FFT Processor for MB-OFDM UWB Systems (MB-OFDM UWB 통신 시스템을 위한 고속 2-Parallel Radix-$2^4$ FFT 프로세서의 설계)

  • Lee, Jee-Sung;Lee, Han-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.533-534
    • /
    • 2006
  • This paper presents the architecture design of a high-speed, low-complexity 128-point radix-$2^4$ FFT processor for ultra-wideband (UWB) systems. The proposed high-speed, low-complexity FFT architecture can provide a higher throughput rate and low hardware complexity by using 2-parallel data-path scheme and single-path delay-feedback (SDF) structure. This paper presents the key ideas applied to the design of high-speed, low-complexity FFT processor, especially that for achieving high throughput rate and reducing hardware complexity. The proposed FFT processor has been designed and implemented with the 0.18-m CMOS technology in a supply voltage of 1.8 V. The throughput rate of proposed FFT processor is up to 1 Gsample/s while it requires much smaller hardware complexity.

  • PDF

A 7.6 mW 2 Gb/s Proximity Transmitter for Smartphone-Mirrored Display Applications

  • Liu, Dang;Liu, Xiaofeng;Rhee, Woogeun;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.415-424
    • /
    • 2016
  • This paper describes a high data rate proximity transmitter design for high resolution smartphone-mirrored display applications. A 2 Gb/s transmitter is designed with a low transmission power of -70 dBm/MHz and a wide bandwidth of nearly 3 GHz. A digital pre-correction method is employed in the transmitter to mitigate the inter-symbol interference problem. A carrier-based digital pulse shaping and a reconfigurable digital envelope generation methods are employed for robust operation by utilizing 20 phases from a 2 GHz phase-locked loop. A 6.5-9.5 GHz transmitter implemented in 65 nm CMOS achieves the maximum data rate of 2 Gb/s, consuming only 7.6 mW from a 1 V supply.

Performance Analysis of M-ary THMA-UWB System Using MHP as Basis Pulses (MHP를 기저펄스로 사용하는 M진 THMA-UWB 시스템의 성능 분석)

  • Hwang, Jun-Hyeok;Kim, Suk-Chan;Kim, Jin-Sic;Park, Ju-Sung;Choi, Won-Tae;Kang, Bong-Soon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.93-94
    • /
    • 2007
  • 이 논문은 시간도약 다중접속(time hopping multiple access: THMA) 초광대역(ultra wideband: UWB) 시스템에서 Modified Hermite Polynomial(MHP)을 기저펄스로 사용하는 M진 고속전송 기법을 제안하고, 시스템의 성능을 분석한다. MHP 펄스 차수들의 상호간 직교성을 이용하여 서로 다른 차수의 MHP 기저펄스 N개를 선형결합하여 M진으로 전송한다. MHP 기저펄스의 상호상관 함수를 구하여 제안하는 M진 시스템의 이론적인 성능을 분석하고, 모의실험을 통해서 기존의 M진 전송에 비해서 시스템의 비트오류확률(bit error rate: BER)이 개선됨을 보인다.

  • PDF