• Title/Summary/Keyword: UV-Vis-NIR

Search Result 147, Processing Time 0.023 seconds

Property of purple gold with Al contents (퍼플골드의 Al 조성 증가에 따른 물성 변화)

  • Choi, Seung-Jae;Song, Oh-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.970-973
    • /
    • 2011
  • 유색 금 합금 중의 하나인 퍼플골드(purple gold)는 특유의 적자색(보라색)이 나는 78wt%Au-22wt%Al의 조성으로 이루어진 금 합금으로 많은 각광을 받고 있다. 본 연구에서는 78wt%Au-22wt%Al(이후 Au1)인 기준 조건보다 Al의 상대조성이 커짐에 따라 보라색과 기계적 물성의 변화를 확인하기 위해 76wt%Au-24wt%Al(이후Au2), 74wt%Au-26wt%Al(이후 Au3), 72wt%Au-28wt%Al(이후 Au4)으로 Al 조성을 22~26%Al까지 변화시키고 이때의 비커스 경도, 광학현미경, EDS, UV-VIS-NIR 색차분석 실험을 실시하였다. 비커스경도 측정결과 Al의 함유량이 증가함에 따라 경도값은 감소하는 경향성을 보였으며, 26wt%Al 이상의 조성에서 Au1 조성에 상응하는 경도 값을 유지할 수 있음을 확인하였다. 광학현미경을 이용한 미세구조 분석결과 Al의 함유량이 증가함에 따라 적자색을 띄는 결정립 $AuAl_2$의 분포는 감소하며, 결정립계에 석출하는 Al-rich 상의 분포와 크기는 증가하는 경향을 확인하였다. EDS를 이용한 성분분석 결과 실제 목표했던 조성과 분석오차를 고려하면 잘 일치함을 확인하였다. UV-VIS-NIR를 이용한 색차 분석결과 Au3 조성까지도 보라색을 유지할 수 있음을 확인하였다. 따라서 비커스경도와 색을 고려하면 기존 19K인 Au1보다 18K의 Au2 조성에서도 퍼플골드 구현이 가능하였다. 이후 Au2 조성으로 블랙홀과 아라크네를 모티브로 하여 실제 주얼리 제품을 성공적으로 제조하였다.

  • PDF

Growth and Characterization of Lithium Potassium Phthalate (LiKP) Single Crystals for Third Order Nonlinear Optical Applications

  • Sivakumar, B.;Raj, S. Gokul;Kumar, G. Ramesh;Mohan, R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3755-3760
    • /
    • 2012
  • Single crystals of lithium potassium phthalate (LiKP) were successfully grown from aqueous solution by solvent evaporation technique. The grown crystals were characterized by single crystal X-ray diffraction. The lithium potassium phthalate $C_{16}\;H_{12}\;K\;Li_3\;O_{11}$ belongs to triclinic system with the following unit-cell dimensions at 298(2) K;$a=7.405(5){\AA}$;$b=9.878(5){\AA}$;$c=13.396(5){\AA}$;${\alpha}=71.778(5)^{\circ}$;${\beta}=87.300(5)^{\circ}$;${\gamma}=85.405(5)^{\circ}$; having a space group P1. Mass spectrometric analysis provides the molecular weight of the compound and possible ways of fragmentations occurs in the compound. Thermal stability of the crystal was also studied by both simultaneous TGA/DTA analyses. The UV-Vis-NIR spectrum shows a good transparency in the whole of Visible and as well as in the near IR range. Third order nonlinear optical studies have also been studied by Z-scan technique. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated. The results have been discussed in detail.

Color Enhancement of Natural Sapphires by High Pressure High Temperature Process

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.165-170
    • /
    • 2015
  • We employed the high-pressure high temperature (HPHT) process to enhance the colors of natural sapphires to obtain a vivid blue. First, we analyze the content of the coloring agent $Fe_2O_3$ using the wavelength dispersive X-ray fluorescence (WD-XRF) method. The HPHT procedure operates under 1 GPa at various temperatures of 1700, 1750, and $1800^{\circ}C$ for 5 minutes using a cubic press. We determine the color changes using the optical microscopic images, UV-VIS near-infrared (NIR) spectra, micro-Raman spectra, and Fourier transform-infrared (FT-IR) spectra for all sapphire samples before and after the treatment. The optical microscopic results indicate that the HPHT process can enhance the sapphire color to a vivid blue at temperatures above $1750^{\circ}C$. The UV-VIS-NIR spectra identify the color changes explicitly and quantitatively through providing the Lab color scales and color differences. Both results demonstrate that the colors of natural sapphires can be enhanced to a vivid blue using the HPHT process above $1750^{\circ}C$ under 1 GPa for 5 minutes.

Sodium titanate as an infrared reflective material for cool roof application

  • Ullah, Mahboob;Kim, Hee Jung;Heo, Jae Gu;Roh, Dong Kyu;Kim, Dae-Sung
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.spc1
    • /
    • pp.86-91
    • /
    • 2019
  • A solid-state route was used to prepare sodium titanium oxide (NTO, Na2Ti3O7) as a solar heat protecting material with an impressive solar reflectance (TSR = 94.3%) using a high refractive index rutile TiO2. The solar reflectance of the synthesized NTO was measured using UV-Vis-NIR spectrophotometer. Solar reflectance property of the synthesized compound depends on the calcination temperature. The solar reflectance property of the synthesized NTO powder was compared with commercial rutile TiO2. The compound synthesized at 900 ℃ for 24 hrs had remarkable solar reflectance 94.3% than that calcined below 900 ℃. Crystalline nature, structural property, morphology and optical properties of NTO powders were characterized and analyzed using XRD, FE-SEM, EDS and UV-Vis-NIR spectrophotometer. From the results, we guessed that NTO would be a suitable "solar heat protecting candidate" for energy-saving applications in coating industries.

Infrared Absorption and Reflection Properties of Silver Nanoparticles Synthesized by Liquid Reduction Method (액상환원법을 이용하여 합성된 은 나노입자의 적외선 흡수 및 반사 특성)

  • Hong, Min Ji;Park, Min Ji;Kim, Jong Hwa;Rokade, Ashish A.;Jin, Young Eup;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.587-592
    • /
    • 2017
  • Uniform and optimum sized silver nanoplates were synthesized through the liquid phase reduction method by using silver nitrate solution as a starting chemical, dimethylformmide (DMF) as a reducing solvent, and polyvinylpyrrolidone (PVP) as reducing and surfactant agents. Synthesized and also film samples were characterized by using SEM, TEM, UV-Vis-NIR spectroscopy, particle size analyzer (PSA), and XRD. Triangle nanoplates with the size of 100~200 nm were found from the sample synthesized at $70^{\circ}C$ for 72 h using silver nitrate, DMF and 26 wt% PVP. The sample could reflect near-infrared light because it showed the maximum absorbing peak at about 1,000 nm. When the content or particle size of silver nanoplates increased in coating solutions, the transmittance decreased and the reflectance increased in film samples.

Comparison of optical reflectance spectrum at blade and vein parts of cabbage and kale leaves

  • Ngo, Viet-Duc;Ryu, Dong-Ki;Chung, Sun-Ok;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • Objective of the study was to compare reflectance spectrum in the blade and the vein parts of cabbage and kale leaves. A total 6 cabbage and kale leaves were taken from a plant factory in Chungnam National University, Korea. Spectra data were collected with a UV/VIS/NIR spectrometer (model: USB2000, Ocean Optics, FL, USA) in the wavelength region of 190 - 1130 nm. Median filter smoothing method was selected to preprocess the obtained spectra data. We computed reflectance difference by subtraction of averaged spectrum from individual spectrum. To estimate correlation at different parts of cabbage and kale leaves, cross - correlation method was used. Differences between cabbage and kale leaves are clearly manifested in the green, red and near - infrared ranges. The percent reflectance of cabbage leaves in the NIR wavelength band was higher than that of kale leaves. Reflectance in the blade part was higher than in the vein part by 18%. Reflectance difference in the different parts of cabbage and kale leaves were clear in all of the wavelength bands. Standard deviation of reflectance difference in the vein part was greater for kale, while the value in the blade part was greater for cabbage leaves. Standard deviation of cross - correlation increased from 0.092 in the first sensor (UV/VIS) and 0.007 in the second sensor (NIR) to 0.099 and 0.015, respectively.

Characterization of a Commercial Black Chrome Solar Coating (상업용 Black Chrome 태양선택 흡수면의 특성)

  • Lee, K.D.;Chea, Y.H.;Auh, P.C.
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.65-73
    • /
    • 1987
  • Microstructural basis for the thermal degradation of electrodeposited black chrome "solar-L-foil" heated in air has been investigated using scanning electron microscopy, energy dispersive x-ray analysis, X-ray diffraction techniques and UV-VIS-NIR spectre-photometer. Experimental result, the change in the shape of the particle comprising the film from their initial needle like structure to a more spherical shape with an oxide after 1hr annealing at $600^{\circ}C$ has been observed. The effect is to degrade solar absorptance of the thin film.

  • PDF

The color enhancement of natural Zambian amethyst by the hydrothermal treatment method (수열처리법을 이용한 잠비아산 천연 자수정의 색상개선)

  • 박춘원;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.73-77
    • /
    • 2004
  • The color enhancement for natural Zambian amethyst of low quality was carried out by the hydrothermal treatment method. The hydrothermal treatment conditions were as follows: reaction temperature; $300^{\circ}C$, duration; 30 hrs, filling; 40%, solvent; 6 M-HCI solution. The reddish purple amethyst of high quality was obtained under these conditions. From the result of ICP/AES, it was known that color enhancement was affected by a Fe elemental content to exist in the inside of natural Zambian amethyst. Also, from the result of UY-VIS-NIR, it was shown that the absorption peak at 550 nm after hydrothermal treatment is slightly lower than those of non-treated natural Zambian amethyst. In this study, it was known that hydrothermal treatment method was a way to suitable for increase of commercial value of natural Zambian amethyst.

Properties of Working Electrodes with IGZO layers in a Dye Sensitized Solar Cell

  • Kim, Gunju;Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • We prepared a working electrode (WE) coated with 0 ~ 50 nm-thick indium gallium zinc oxide(IGZO) by using RF sputtering to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) were used to analyze the microstructure and composition of the IGZO layer. UV-VIS-NIR spectroscopy was used to determine the transparency of the WE with IGZO layers. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with IGZO layer. From the results of the microstructural analysis, we were able to confirm the successful deposition of an amorphous IGZO layer with the expected thickness and composition. From the UV-VIS-NIR analysis, we were able to verify that the transparency decreased when the thickness of IGZO increased, while the transparency was over 90% for all thicknesses. The photovoltaic results show that the ECE became 4.30% with the IGZO layer compared to 3.93% without the IGZO layer. As the results show that electron mobility increased when an IGZO layer was coated on the $TiO_2$ layer, it is confirmed that the ECE of a DSSC can be enhanced by employing an appropriate thickness of IGZO on the $TiO_2$ layer.

Hydrothermal Synthesis of Vanadium (IV) Dioxide and its Thermochromic Property (바나듐(IV) 이산화물의 수열합성 및 이의 열변색 특성)

  • Lee, Hun Dong;Son, Dae Hee;Lee, Won Ki;Jin, Young Eup;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.427-431
    • /
    • 2015
  • In this study, vanadium dioxide ($VO_2$) powder well known as a thermochromic material was prepared from $V_2O_5$ powder and oxalic acid dihydrate by hydrothermal and calcination process at various conditions. The chemical bonding and crystal structures in addition to thermal property of samples were determined using FE-SEM, XRD, XPS, and DSC. Also, spectroscopic and thermochromic properties of film samples were analyzed by UV-Vis-NIR spectroscopy after the thin film was prepared from the sol dispersed with the size of below 50 nm by the ball-milling of powder sample. With increasing the calcination temperature, the phase transition temperature of samples increased from $40^{\circ}C$ to $70^{\circ}C$ due to the increase of particle size.