DOI QR코드

DOI QR Code

Hydrothermal Synthesis of Vanadium (IV) Dioxide and its Thermochromic Property

바나듐(IV) 이산화물의 수열합성 및 이의 열변색 특성

  • Lee, Hun Dong (R&D Center, CFC Teramate Co.) ;
  • Son, Dae Hee (R&D Center, CFC Teramate Co.) ;
  • Lee, Won Ki (Department of Polymer Engineering, Pukyong National University) ;
  • Jin, Young Eup (Department of Industrial Chemistry, Pukyong National University) ;
  • Lee, Gun-Dae (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University)
  • Received : 2015.04.03
  • Accepted : 2015.06.30
  • Published : 2015.08.10

Abstract

In this study, vanadium dioxide ($VO_2$) powder well known as a thermochromic material was prepared from $V_2O_5$ powder and oxalic acid dihydrate by hydrothermal and calcination process at various conditions. The chemical bonding and crystal structures in addition to thermal property of samples were determined using FE-SEM, XRD, XPS, and DSC. Also, spectroscopic and thermochromic properties of film samples were analyzed by UV-Vis-NIR spectroscopy after the thin film was prepared from the sol dispersed with the size of below 50 nm by the ball-milling of powder sample. With increasing the calcination temperature, the phase transition temperature of samples increased from $40^{\circ}C$ to $70^{\circ}C$ due to the increase of particle size.

본 연구에서는 열-변색 소재로 잘 알려진 이산화바나듐($VO_2$) 분말을 $V_2O_5$ 분말과 옥살산 수화물로부터 여러 조건에서 수열합성과 하소공정을 통하여 제조하였다. 제조된 시료들의 화학적 구조, 결정구조 및 열적 특성들은 FE-SEM, XRD, XPS 및 DSC를 이용하여 분석하였다. 또한, 필름 시편들의 분광학적 및 열변색 특성은 제조된 분말 시료들을 볼밀링하여 50 nm 이하로 분산시켜 제조된 졸로부터 박막필름을 제작하여 UV-Vis-NIR 분광기를 이용하여 분석하였다. $VO_2$ 시료의 하소처리 온도를 증가시키면, 입자들의 크기가 증가함에 따라 시료의 상전이온도가 약 $40^{\circ}C$에서 $70^{\circ}C$로 증가하는 경향을 나타내었다.

Keywords

References

  1. Z. Huang, S. Chen, C. Lv, Y. Huang, and J. Lai, Infrared characteristics of $VO_2$ thin films for smart window and laser protection applications, App. Phys. Lett., 101, 191905-191908 (2012). https://doi.org/10.1063/1.4766287
  2. J. Nag and R. F. Haglund Jr, Synthesis of vanadium dioxide thin films and nanoparticles, J. Phys. : Cond. Matt., 20, 264016-264030 (2008). https://doi.org/10.1088/0953-8984/20/26/264016
  3. C. Leroux, G. Nihoul, and G. V. Tendeloo, From $VO_2$ (B) to $VO_2$ (R): Theoretical structures of $VO_2$ polymorphsand in situ electron microscopy, Phys. Rev. B., 57, 5111-5121 (1998). https://doi.org/10.1103/PhysRevB.57.5111
  4. M. Maaza, K. Bouziane, J. Maritz, D. D. McLachian, R. Swanepool, J. M. Frigerio, and M. Every, Direct production of thermochromic $VO_2$ thin film coatings by pulsed laser ablation, Opti. Mater., 15, 41-45 (2000). https://doi.org/10.1016/S0925-3467(99)00104-4
  5. Y. Muraoka, Y. Ueda, and Z. Hiroi, Large modification of the metal-insulator transition temperature in strained $VO_2$ films grown on $TiO_2$ substrates, J. Phys. Chem. Sol., 63, 965-967 (2002). https://doi.org/10.1016/S0022-3697(02)00098-7
  6. J. B. Goodenough, The two components of the crystallographic transition in $VO_2$, J. Sol. State Chem., 3, 490-500 (1971). https://doi.org/10.1016/0022-4596(71)90091-0
  7. A. Zylbersztejn and N. F. Mott, Metal-insulator in vanadium dioxide, Phys. Rev. B., 11, 4383-4395 (1975). https://doi.org/10.1103/PhysRevB.11.4383
  8. P. Kiria, G. Hyett, and R. Binions, Solid state thermochromic materials, Adv. Mat. Lett., 1, 86-105 (2010). https://doi.org/10.5185/amlett.2010.8147
  9. G. Fu, A. Polity, N. Volbers, and B. K. Meyer, Annealing effect on VO2 thin films deposited by reactive sputtering, Thin Sol. Film., 515, 2519-2522 (2006). https://doi.org/10.1016/j.tsf.2006.04.025
  10. R. Binions, G. Hyett, C. Piccirillo, and I. P. Parkin, Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl aceylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties, J. Mater. Chem., 17, 4652-4660 (2007). https://doi.org/10.1039/b708856f
  11. T. D. Manning and I. P. Parkin, Atmospheric pressure chemical vapour deposition of tungsten doped vanadium (IV) oxide from $VOC_3$, water and $WCl_6$, J. Mater. Chem., 14, 2554-2559 (2004). https://doi.org/10.1039/b403576n
  12. J. Narayan and V. M. Bhosle, Phase transition and critical issues in structure-property correlations of vanadium oxide, J. Appl. Phys., 100, 103524-103530 (2006). https://doi.org/10.1063/1.2384798
  13. Y. L. Wang, X. K. Chen, M. C. Li, R. Wang, G. Wu, J. P. Yang, W. H. Han, S. Z. Cao, and L. C. Zhao, Phase composition and valence of pulsed laser deposited vanadium oxide thin films at different oxygen pressures, Surf. Coat. Technol., 201, 5344-5347 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.087
  14. S. Pavasupree, Y. Suzuki, A. Kitiyanan, S. Pivsa-Art, and S. Yoshikawa, Synthesis and characterization of vanadium oxides nanorods, J. Soli. Stat. Chem., 178, 2152-2158 (2005). https://doi.org/10.1016/j.jssc.2005.03.034
  15. C. Zheng, J. Zhang, G. Luo, J. Ye, and M. Wu, Preparation of vanadium dioxide powders by thermolysis of a precursor at low temperature, J. Mate. Sci., 35, 3425-3429 (2000). https://doi.org/10.1023/A:1004897405613
  16. Z. Peng, W. Jiang, and H. Liu, Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis, J. Phys. Chem. C, 111, 1119-1122 (2007).
  17. S. A. Lawton and E. A. Theby, Synthesis of vanadium oxide powders by evaporative decomposition of solutions, J. Am. Ceram. Soc., 78, 104-108 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08367.x
  18. J Liu, Q. Li, T. Wang, D. Yu, and Y. Li, Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electical transport, and magnetic properties, Angew. Chem., 116, 5158-5162 (2004). https://doi.org/10.1002/ange.200460104
  19. W. Chen, J. Peng, L. Mai, and Y. Qi, Synthesis and characterization of novel vanadium dioxide nanorods, Sol. Stat. Comm., 132, 513-516 (2004). https://doi.org/10.1016/j.ssc.2004.09.013
  20. L. Kang, Y. Gao, and H. Luo, A novel solution process for the synthesis of $VO_2$ thin films with excellent thermochromic properties, ACS Appl. Mater. Interface, 1, 2211-2218 (2009). https://doi.org/10.1021/am900375k
  21. H. K. Kim, H. You, R. Chiarello, H. L. M. Chang, T. J. Zhang, and D. J. Lam, Finite-size effect on the first-order metal-insulator transition in $VO_2$ films grown by metal-organic chemical-vapor deposition, Phys. Rev. B, 47, 12900-12907 (1993). https://doi.org/10.1103/PhysRevB.47.12900
  22. C. Granqvist, Window coatings for the future, Thin Sol. Film., 193, 730-741 (1990).
  23. G. V. Jorgenson and J. C. Lee, Doped vanadium oxide for optical switching films, Sol. Ener. Mater., 14, 205-214 (1986). https://doi.org/10.1016/0165-1633(86)90047-X
  24. I. Takahashi, M. Hibino, and T. Kudo, Thermochromic $V_{1-x}W_xO_2$ thin films prepared by wet coating using polyvnadate solutions, Jpn. J. Appl. Phys., 35, L438-440 (1996). https://doi.org/10.1143/JJAP.35.L438
  25. T. J. Hanlon, J. A. Coath, and M. A. Richardson, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method, Thin Sol. Film., 436, 269-272 (2003). https://doi.org/10.1016/S0040-6090(03)00602-3
  26. Z. Luo, and Z. Wu, X. Xu, M. Du, T. Wang, and T. Jiang, Microstructures and thermochromic properties of tungsten doped vanadium oxide films prepared by using $VO_x$-W-$VO_x$ sandwich structure, Mat. Sci. & Eng. B, 176, 762-766 (2011). https://doi.org/10.1016/j.mseb.2011.02.022
  27. S. Ji, Y. Zhao, F. Zhang, and P. Jin, Direct formation of single crystal $VO_2$ (R) nanorods by one-step hydrothermal treatment, J. Cryst. Growth, 312, 282-286 (2010). https://doi.org/10.1016/j.jcrysgro.2009.10.026

Cited by

  1. 오산화바나듐의 수소 환원에 의한 이산화바나듐의 제조 및 열변색 특성 vol.26, pp.5, 2015, https://doi.org/10.7844/kirr.2017.26.5.61