• Title/Summary/Keyword: UV-NIL

Search Result 52, Processing Time 0.027 seconds

The Minimization of Residual Layer Thickness by using optimized dispensing method in UVnanoimprint Lithography Process (UV 나노임프린트 리소그래피 공정에서 레지스트 도포의 최적화를 통한 잔류층 두께의 최소화)

  • Kim K.D.;Jeong J.H.;Sim Y.S.;Lee E.S.;Kim J.H.;Cho Y.K.;Hong S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.633-636
    • /
    • 2005
  • Imprint lithography is a promising method for high-resolution and high-throughput lithography using low-cost equipment. As with other nanoimprint methods, ultraviolet-nanoimprint lithography (UV-NIL) resolution appears to be limited only by template resolution, and offers a significant cost of ownership reduction when compared to other next generation lithography (NGL) methods such as EUVL and 157 nm lithography. The purpose of this paper is to suggest optimum values of control parameters of Imprio 100 manufactured by Molecular Imprint, Inc., which is the first commercially available UV-NIL tool, for sound nanoimprint. UV-NIL experiments were performed on Imprio 100 to find dispensing recipe for avoiding air entrapment. Dispensing recipe related to residual layer thickness and uniformity was optimized and 40 nm thick residual layer was achieved.

  • PDF

Numerical Analysis of Effects of Velocity Inlet and Residual Layer Thickness of Resist on Bubble Defect Formation (레지스트 잔류층 두께와 몰드 유입속도가 기포결함에 미치는 영향에 대한 수치해석)

  • Lee, Woo Young;Kim, Nam Woong;Kim, Dong Hyun;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Recently, the major trends of NIL are high throughput and large area patterning. For UV NIL, if it can be proceeded in the non-vacuum environment, which greatly simplifies tool construction and greatly shorten process times. However, one key issue in non-vacuum environment is air bubble formation problem. In this paper, numerical analysis of bubble defect of UV NIL is performed. Fluent, flow analysis focused program was utilized and VOF (Volume of Fluid) skill was applied. For various resist-substrate and resist-mold angles, effects of velocity inlet and residual layer thickness of resist on bubble defect formation were investigated. The numerical analyses show that the increases of velocity inlet and residual layer thickness can cause the bubble defect formation, however the decreases of velocity inlet and residual layer thickness take no difference in the bubble defect formation.

The Development of Uniform Pressurizing System for Extremely Large Area UV-NIL (극대면적 UV-NIL 공정에서의 균일 가압 시스템 개발)

  • Choi, Won-Ho;Shin, Yoon-Hyuk;Yeo, Min-Ku;Yim, Hong-Jae;Sin, Dong-Hun;Jang, Si-Youl;Jeong, Jay-Il;Lee, Kee-Sung;Lim, Si-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1917-1921
    • /
    • 2008
  • Ultraviolet-nanoimprint lithography (UV-NIL) is promising technology for cost effectively defining micro/nano scale structure at room temperature and low pressure. In addition, this technology is fascinating because of it's possibility for high-throughput patterning without complex processes. However, to acquire good micro/nano patterns using this technology, there are some challenges such as uniformity and fidelity of patterns, etc. In this paper, we have focused on uniform contact mechanism and performed contact mechanics analysis. The dimension of the flexible sheet to get adequate uniform contact area has been obtained from contact mechanics simulation. Based on this analysis, we have made a uniform pressurizing device and confirmed its uniform pressurized zone using a pressure sensing paper.

  • PDF

Numerical Simulation of NIL Process Based on Continuum Hypothesis (연속체 가정을 통한 NIL 공정의 전산모사)

  • Kim, Seung-Mo;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.532-537
    • /
    • 2007
  • Nano imprint lithography(NIL) is a cost-efficient, high-throughput processing technique to transfer nano-scale patterns onto thin polymer films. Polymers used as the resist include UV cured resins as well as thermoplastics such as polymethyl-methacrylate(PMMA). In this study, an analytic investigation was performed for the NIL process of transferring nano scale patterns onto polymeric films. Process optimization calls for a thorough understanding of resist flow during the process. We carried out 2D and 3D numerical analyses of resist flow during NIL process. The simulation incorporated continuum-hypothesis and the effects of surface tension were taken into account. For a more effective prediction of free surface, fixed grid scheme with the volume of fluid (VOF) method were used. The simulation results were verified with experimental results qualitatively. And the parametric study was performed for various process conditions.

  • PDF

Effect of Boundary Slip Phenomena in Nanoimprint Lithography Process (나노임프린트 리소그래피 공정에서 Slip에 의한 경계 효과)

  • Lee, Young-Hoon;Kim, Nam-Woong;Sin, Hyo-Chol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.144-153
    • /
    • 2009
  • It is widely known that no-slip assumptions are often violated on regular basis in micrometer- or nanometer-scale fluid flow. In the case of cavity-filling process of nanoimprint lithography(NIL), slip phenomena take place naturally at the solid-to-liquid boundaries, that is, at the mold-to-polymer or polymer-to-substrate boundaries. If the slip or partial slip phenomena are promoted at the boundaries, the processing time of NIL, especially of thermal-NIL which consumes more tact time than that of UV-NIL, can be significantly improved. In this paper it is aimed to elucidate how the cavity-filling process of NIL can be influenced by the slip phenomena at boundaries and to what degree those phenomena increase the process rate. To do so, computational fluid dynamics(CFD) analysis of cavity filling process has been carried out. Also, the effect of mold pattern shape and initial thickness of polymer resist were considered in the analysis, as well.

Trend of recent research and applications on Nanoimprint Lithography (나노임프린트 리소그래피 기술의 연구 및 응용 동향)

  • Nah, D.B.;Park, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.325-328
    • /
    • 2008
  • With intensive research and development to mass particular nanostructure of 10nm, Nanoimprint lithography will soon be put to practical use. This paper reviews latest research and application trend and also covers technical articles about Nanoimprint lithography technology Published since 1998, including statistical analysis of collected data(Web of Science DB) and related technical trend.

  • PDF

Prediction of Residual Layer Thickness of Large-area UV Imprinting Process (대면적 UV 임프린팅 공정에서 잔류층 두께 예측)

  • Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • Nanoimprint lithography (NIL) is the next generation photolithography process in which the photoresist is dispensed onto the substrate in its liquid form and then imprinted and cured into a desired pattern instead of using traditional optical system. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper, with the rolling type imprinting process, a mold, placed upon the $2^{nd}$ generation TFT-LCD glass sized substrate($370{\times}470mm^2$), is rolled by a rubber roller to achieve a uniform residual layer. The prediction of residual layer thickness of the photoresist by rolling of the rubber roller is crucial to design the rolling type imprinting process, determine the rubber roller operation conditions-mpressing force & feeding speed, operate smoothly the following etching process, and so forth. First, using the elasticity theory of contact problem and the empirical equation of rubber hardness, the contact length between rubber roller and mold is calculated with consideration of the shape and hardness of rubber roller and the pressing force to rubber roller. Next, using the squeeze flow theory to photoresist flow, the residual layer thickness of the photoresist is calculated with information of the viscosity and initial layer thickness of photoresist, the shape of mold pattern, feeding speed of rubber roller, and the contact length between rubber roller and mold previously calculated. Last, the effects of rubber roller operation conditions, impressing force & feeding speed, on the residual layer thickness are analyzed with consideration of the shape and hardness of rubber roller.

Soft Mold Deformation of Large-area UV Impring Process (대면적 UV 임프린팅 공정에서 유연 몰드의 변형)

  • Kim, Nam-Woong;Kim, Kug-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.53-59
    • /
    • 2011
  • Recently there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we focused on the deformation of the $2^{nd}$ generation TFT-LCD sized ($370{\times}470mm^2$) large-area soft mold in the UV imprinting process. A mold was fabricated with PDMS(Poly-dimethyl Siloxane) layered glass back plate(t0.5). Besides, the mold includes large surrounding wall type protrusions of 1.9 mm width and the via-hole(7 ${\mu}m$ diameter) patterend area. The large surrounding wall type protrusions cause the proximity effect which severely degrades the uniformity of residual layer in the via-hole patterend area. Therefore the deformation of the mold was calculated by finite element analysis to assess the effect of large surrounding wall type protrusions and the flexiblity of the mold. The deformation of soft mold was verified by the measurements qualitatively.

Proposed Approaches on Durability Enhancement of Small Structure fabricated on Camera Lens Surface (카메라 렌즈 표면에 형성된 미세 패턴의 내구성 향상 기법 제안)

  • Park, Hong Ju;Choi, In Beom;Kim, Doo-In;Jeong, Myung Yung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.467-473
    • /
    • 2019
  • In this study, approached to improve durability of the multi-functional nano-pattern fabricated on the curved lens surface using nanoimprint lithography (NIL) was proposed, and the effects of the proposed methods on functionality after wear test were examined. To improve the mechanical property of ultraviolet(UV)-curable resin, UV-NIL was conducted at the elevated temperature around $60^{\circ}C$. In addition, micro/nano hierarchical structures was fabricated on the lens surface with a durable film mold. Analysis on the worn surfaces of nano-hole pattern and hierarchical structures and measurements on the static water contact angle and critical water volume for roll-off indicated that the UV curing process with elevated temperature is effective to maintain wettability by increasing hardness of resin. Also, it was found that the micro-scale pattern is effective to protect nano-pattern from damage during wear test.