• Title/Summary/Keyword: UV-C treatment

Search Result 367, Processing Time 0.027 seconds

Changes in the Quality of Peaches (Prunus persica L. Batsch) Treated by UV-C Irradiation during Storage (Ultraviolet-C 조사에 의한 복숭아의 저장 중 품질변화)

  • Jang, Joo-Hee;Park, Jae-Hee;Ban, Ki-Eun;Lee, Kyung-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1798-1804
    • /
    • 2012
  • To prolong the shelf-life of domestic peaches, samples were treated with UV-C (0~10.0 $kJ/m^2$) and the spoiling rate and changes in physico-chemical and sensory properties were investigated. No spoiled peaches were observed within the first four days of storage in the control and 2.5 $kJ/m^2$ UV-C treatment groups. However, spoilage was observed in these groups on day six, and 29.17% and 25.0% of the samples showed spoilage on 10 day, respectively. Moreover, samples treated with greater than 5.0 $kJ/m^2$ of UV-C showed a higher percentage (41.67% or higher) of spoilage than those of the control or 2.5 $kJ/m^2$ UV-C treatment groups on 10 day. Additionally, weight changes in the peaches were the lower in the control group and 2.5 $kJ/m^2$ UV-C treatment group than in those treated with 5.0 $kJ/m^2$ of UV-C treatment or higher during 10 days of storage. There was no difference in pH among treatments, regardless of storage time. The hardness of the samples was not changed immediately after UV-C treatment, but that of samples treated with 5.0~10.0 $kJ/m^2$ of UV-C decreased rapidly after four days, when compared to the control and 2.5 $kJ/m^2$ UV-C treatment groups. No significant changes in the lightness and redness of the samples were observed in response to UV-C treatment, however, UV-C treatment led to a slight decrease in the yellowness of the samples. The initial taste, flavor, color, texture, and overall acceptance did not differ among control and UV-C treatments. The sensory score of the samples was the highest after 2 and 4 days of storage, while it decreased thereafter. In general, samples in the control and the 2.5 $kJ/m^2$ UV-C treatment groups showed higher sensory quality than those treated with UV-C at 5.0 $kJ/m^2$ or higher.

Combined Effect of Cold Plasma and UV-C Against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on Fresh-cut Lettuce (양상추에 인위접종된 Escherichia coli O157:H7, Salmonella Typhimurium과 Listeria monocytogenes에 대한 저온 플라즈마와 UV-C의 살균 효과)

  • Seong, Ji-Yeong;Park, Mi-Jung;Kwon, Ki-Hyun;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.1
    • /
    • pp.64-69
    • /
    • 2017
  • This study was conducted to investigate the effect of cold plasma combined with UV-C irradiation against Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes on lettuce. E. coli O157:H7, S. Typhimurium, and L. monocytogenes, corresponding to approximately 5.82, 5.09, 5.65 log CFU/g, were inoculated on lettuce, respectively. Then, the lettuce was treated with cold plasma, UV-C and combination (cold plasma + UV-C), respectively. The treated lettuce was stored for 9 days at $4^{\circ}C$ for microbiological analysis and sensory evaluation. Cold plasma reduced the populations of E. coli O157:H7, S. Typhimurium, and L. monocytogenes by 0.26, 0.65, and 0.93 log CFU/g, respectively. Each microorganism were reduced by 0.87, 0.88, and 1.14 log CFU/g after UV-C treatment. And, the combined treatment that was treated by cold plasma after UV-C treatment reduced the populations of inoculated microorganisms by 1.44, 2.70, 1.62 log CFU/g, respectively. The all treatment significantly (p < 0.05) reduced the populations of all inoculated bacteria compared to untreated lettuce. UV-C combined with cold plasma was the most effective for reducing the pathogenic bacteria on lettuce, by showing log-reductions of ${\geq}2.0\;log\;CFU/g$. All treatment was not significantly different until 6 day storage compared to control group in terms of appearance, texture and overall acceptability. Therefore, the combined treatment will be an effective intervention method to control the bacteria on lettuce.

Combination Effect of UV-C and Mild Heat Treatment Against Artificially Inoculated Escherichia coli O157:H7, Salmonella Typhimurium on Black Pepper Powder (후춧가루에 인위접종된 Escherichia coli O157:H7, Salmonella Typhimurium에 대한 UV-C와 mild heat의 살균 효과)

  • Gwak, Seung-Hae;Kim, Jin-Hee;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.495-499
    • /
    • 2018
  • The reduction effect of UV-C irradiation and mild heat treatment was examined against Escherichia coli O157:H7 and Salmonella Typhimurium on black pepper powder. E. coli O157:H7 (ATCC 35150) and S. Typhimurium (ATCC 19585) were inoculated onto black pepper powder at approximately $10^7$ and $10^6CFU/g$, respectively. E. coli O157:H7 and S. Typhimurium were treated with UV-C and mild heat at $60^{\circ}C$. A UV-C intensity ($2.32W/cm^2$ ) was used for 10 min to 70 min at $60^{\circ}C$. After UV-C and heat treatment at $60^{\circ}C$, microbial analysis and color change of black pepper powder was conducted. E. coli O157:H7 and S. Typhimurium were reduced by a level of 1.89 and 2.24 log CFU/g, respectively, when treated with UV-C alone for 70 min. And E. coli O157:H7 and S. Typhimurium were reduced by 2.22 and 5.10 log CFU/g, respectively, when treated with mild heat treatment at $60^{\circ}C$ alone for 70 min. But when combined with UV-C and mild heat, it showed higher levels of reduction by 2.46 and 5.70 log CFU/g. S. Typhimurium was more easily reduced than E. coli O157:H7. Color values were not significantly (p > 0.05) different in all treated samples. Therefore, these results suggest that the combined treatment with UV-C and mild heat was effective to inactivate the food pathogens in black pepper powder and can be used as a food industrial microbial intervention method.

Microbial Decontamination of Black Pepper Powder Using a Commercial-scale Intervention System Combining Ultraviolet-C and Plasma Treatments (Ultraviolet-C와 플라즈마를 병합 처리하는 양산형 살균 시스템을 이용한 후춧가루 미생물 저해)

  • Bang, In Hee;Lee, Seung Young;Han, Kyoon Sik;Min, Sea C.
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.386-391
    • /
    • 2018
  • Effects of a commercial scale intervention system combining ultraviolet (UV)-C and plasma treatments on the microbial decontamination of black pepper powder were investigated. The process parameters include treatment time, time for plasma accumulation before treatment, and water activity of black pepper powder. A significant reduction in the number of indigenous aerobic mesophilic bacteria in black pepper powder was observed after treatments lasted for ${\geq}20min$ (p<0.05) and the reduction was differed by powder manufacturer. The microbial reduction rates obtained by individual UV-C treatment, individual plasma treatment, and UV-C/plasma-combined treatment were 0.2, 0.5, and 1.0 log CFU/g, respectively, suggesting that the efficacy of the microbial inactivation was enhanced by treatment combination. Nonetheless, neither plasma accumulation time nor powder water activity affected the microbial inactivation efficacy of the combined treatment. The UV-C/plasma-combined treatment, however, decreased lightness of black pepper powder, and the decrease generally increased as operation time increased. The plasma accumulation time of 20 min resulted in significant reduction in both lightness and brown color. The results indicate that the commercial-scale intervention system combining treatments of UV-C and plasma has the potential to be applied in the food industry for decontaminating black pepper powder.

A Review of the Efficacy of Ultraviolet C Irradiation for Decontamination of Pathogenic and Spoilage Microorganisms in Fruit Juices

  • Ahmad Rois Mansur;Hyun Sung Lee;Chang Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.419-429
    • /
    • 2023
  • Ultraviolet C (UV-C, 200-280 nm) light has germicidal properties that inactivate a wide range of pathogenic and spoilage microorganisms. UV-C has been extensively studied as an alternative to thermal decontamination of fruit juices. Recent studies suggest that the efficacy of UV-C irradiation in reducing microorganisms in fruit juices is greatly dependent on the characteristics of the target microorganisms, juice matrices, and parameters of the UV-C treatment procedure, such as equipment and processing. Based on evidence from recent studies, this review describes how the characteristics of target microorganisms (e.g., type of microorganism/strain, acid adaptation, physiological states, single/composite inoculum, spore, etc.) and fruit juice matrices (e.g., UV absorbance, UV transmittance, turbidity, soluble solid content, pH, color, etc.) affect the efficacy of UV-C. We also discuss the influences on UV-C treatment efficacy of parameters, including UV-C light source, reactor conditions (e.g., continuous/batch, size, thickness, volume, diameter, outer case, configuration/arrangement), pumping/flow system conditions (e.g., sample flow rate and pattern, sample residence time, number of cycles), homogenization conditions (e.g., continuous flow/recirculation, stirring, mixing), and cleaning capability of the reactor. The collective facts indicate the immense potential of UV-C irradiation in the fruit juice industry. Existing drawbacks need to be addressed in future studies before the technique is applicable at the industrial scale.

Effects of UV-C and Ethanol Treatment on Quality of Fresh-cut Seedless Watermelon (UV-C, 에탄올 처리가 신선편이(Fresh-cut) 씨 없는 수박의 품질에 미치는 영향)

  • Hyun Ah Han;Seung-Hyun Jo;Song-Yee Lee;Eun-Ju Kim;Eun-Ju Song
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.1
    • /
    • pp.17-24
    • /
    • 2023
  • To apply UV-C as a non-heating sterilization method to increase the microbiological safety of fresh seedless watermelon products, reductions in E. coli and quality changes by treatment dose (0, 2, 4, 8, 14, 20 kJ/m2) were investigated. The pH, sugar content, and hardness of watermelon inoculated with E. coli were not significantly different according to the UV-C treatment dose, but the polyphenol content was significantly decreased compared to the controls (425.4 GAE ㎍/g F.W.). When treated with 2 and 4 kJ/m2, the lycopene content was 31.6 and 30.9 ㎍/g F.W., respectively, which was increased compared to the controls (28.5 ㎍/g F.W.). The arginine and citrulline content was also significantly increased compared to the controls. The number of E. coli was significantly decreased compared to the controls following UV-C treatment. Considering the degree of E. coli reduction, lycopene content, arginine content, citrulline content, and UV-C irradiation time, subsequent experiments were conducted by selecting a UV-C treatment dose of 2 kJ/m2. The results of confirming the degree of reduction in the number of E. coli colonies by a single treatment and combined treatment with UV-C 2 kJ/m2 and 70% ethanol showed that the combined treatment was most effective as colonies were decreased by 2.3 log CFU/g compared to the controls. Therefore, it is judged that UV-C 2 kJ/m2 radiation and combined treatment with 70% ethanol could be applied as a non-heating sterilization method for fresh watermelon slices.

A Study on Degradation of Nonylphenol Polyethoxylate Metabolites Using Uv / Photocatalytic Silicagel Treatment

  • Asano, Masahiro;Kishimoto, Naoyuki;Jiku, Fumihiko;Somiya, Isao
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.99-105
    • /
    • 2007
  • Nonylphenol polyetoxylates (NPnEOs) metabolites; nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), nonylphenoxyacetic acid (NPEC) (collectively referred to "NPE-c") were examined for their degradations by using of lab-scale UV/photocatalytic silicagel (ultraviolet photocatalytic degradation in the presence of silicagel coated with titanium dioxide as a catalyst) reactor. NPE-c degradations by UV/photocatalytic silicagel treatment reached approximately 85-93 % after 40 min irradiation independently of its initial concentration (between ca. 0.5 and 2.0mg/l). Any intermediates under the NPE-c degradation were not identified by GC/MS sample analysis. Degradations of NPE-c were followed pseudo first-order kinetics. Then, the effectiveness of UV/photocatalytic silicagel treatment for degradation of NPE-c was in the order of NPEC > NP > NP1EO.

  • PDF

Analysis of Surface Degradation on Accelerated UV-treated Polymeric Housing Materials for Outdoor Insulator (자외선 가속열화에 따른 옥외용 폴리머 절연재료의 표면열화 분석)

  • Yeon, Bok-Hui;Lee, Sang-Yong;Heo, Chang-Su;Sim, Dae-Seop;Jo, Han-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.479-488
    • /
    • 2001
  • The effects of accelerated Ultraviolet (UV) radiation on High temperature vulcanized (HTV), Room temperature vulcanized (RTV) silicone rubber and two types of ethylene propylene diene terpolymer (EPDM) used for composite insulator were inverstigated by hydrophobicity class (HC), surface voltage decay after corona charging, SEM-EDS, FTIR and XPS. The contact angle in two kinds of silicone rubber was scarcely change, but EPDM occurred to the loss of hydrophobicity followed by surface cracking and chalking. The surface voltage decay on UV-treated silicone rubber and EPDM showed a different decay trend with UV treatment. EDS and XPS analysis indicated that the oxygen content increased with UV treatment time in all samples. For silicone rubber, the oxidized groups of inorganic silica-like structure increased with UV treatment time. The oxidized carbon of C=0, O=C-O in EPDM increased. These oxidized surface for each material had different electrostatic characteristics, so deposited charges were expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results was discussed.

  • PDF

Application of Low Dose UV-C Irradiation for Shelf-Life Extension of Peach (Prunus persica L. Batsch) (복숭아 저장성 증진을 위한 저선량의 UV-C 조사 효과)

  • Lee, Kyung-Haeng;Park, Jae-Hee;Lee, Yu-Jin;Ban, Ki-Eun;Jang, Joo-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.85-91
    • /
    • 2013
  • For shelf-life improvement of the domestic peach, a treatment with low dose UV-C (0~3.0 $kJ/m^2$) irradiation was performed and the spoilage rate and changes of physico-chemical and sensory properties of the peach were investigated. Control showed spoilage at day 4, and then 50% of control showed spoilage at day 8. However, samples treated with low dose UV-C showed lower percentage of spoilage than those of control at day 8. Weight changes of control and the samples with UV-C treatment showed no difference during the storage period. There was no difference in pH of samples among the treatments but they were increased by storage time. Hardness of samples was not different among treatments at initial stage of storage after UV-C treatment. However, the hardness of control sample was decreased faster than those of the samples with low dose UV-C treatment after 6 days of storage. No significant changes in lightness, redness and yellowness of the samples by UV-C treatment were observed. The sensory parameters including taste, flavor, and color at initial and during storage period were not different among treatments except for texture and overall acceptance. The scores for texture and overall acceptance of control were decreased faster than those of UV-C treatments during storage. In general, samples treated with low dose UV-C showed higher sensory quality than control.

Effects of combined acetic acid and UV-C irradiation treatment on the microbial growth and the quality of sedum during its storage (Acetic acid와 UV-C 병합처리가 돌나물의 저장 중 미생물 성장과 품질에 미치는 영향)

  • Seong, Ki Hyun;Kang, Ji Hoon;Song, Kyung Bin
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.581-586
    • /
    • 2014
  • With the current consumer trend toward health and wellbeing, the demand for consumption of fresh cut vegetables has been increasing. As a popular vegetable with functional components, sedum (Sedum sarmentosum) is widely used in Korea as a side dish that needs no cooking. In this study, to provide a hurdle technology for postharvest sedum, the effects of combined treatment of 1% acetic acid for washing and $10kJ/m^2$ UV-C irradiation on the microbial growth and quality of sedum were examined. After the treatment, the sedum samples were stored at $10^{\circ}C$ for six days, and the results of their microbial analysis as well as their color, vitamin C content, and antioxidant activity were analyzed. The combined treatment with acetic acid and UV-C irradiation reduced the initial populations of the total aerobic bacteria and the yeast and molds in the sedum by 3.28 and 4.22 log CFU/g, respectively, compared to those in the control. The Hunter L, a, and b values of the sedum did not significantly differ across the treatments. In addition, the vitamin C content and the antioxidant activity decreased significantly during the storage, regardless of the treatment. These results suggest that the combined treatment with 1% acetic acid and $10kJ/m^2$ UV-C irradiation can be useful as a hurdle technology for retaining the microbiological safety and quality of sedum during its storage.