DOI QR코드

DOI QR Code

Combined Effect of Cold Plasma and UV-C Against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on Fresh-cut Lettuce

양상추에 인위접종된 Escherichia coli O157:H7, Salmonella Typhimurium과 Listeria monocytogenes에 대한 저온 플라즈마와 UV-C의 살균 효과

  • 성지영 (국민대학교 자연과학대학 식품영양학과) ;
  • 박미정 (국민대학교 자연과학대학 식품영양학과) ;
  • 권기현 (한국식품연구원) ;
  • 오세욱 (국민대학교 자연과학대학 식품영양학과)
  • Received : 2016.11.01
  • Accepted : 2016.11.08
  • Published : 2017.02.28

Abstract

This study was conducted to investigate the effect of cold plasma combined with UV-C irradiation against Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes on lettuce. E. coli O157:H7, S. Typhimurium, and L. monocytogenes, corresponding to approximately 5.82, 5.09, 5.65 log CFU/g, were inoculated on lettuce, respectively. Then, the lettuce was treated with cold plasma, UV-C and combination (cold plasma + UV-C), respectively. The treated lettuce was stored for 9 days at $4^{\circ}C$ for microbiological analysis and sensory evaluation. Cold plasma reduced the populations of E. coli O157:H7, S. Typhimurium, and L. monocytogenes by 0.26, 0.65, and 0.93 log CFU/g, respectively. Each microorganism were reduced by 0.87, 0.88, and 1.14 log CFU/g after UV-C treatment. And, the combined treatment that was treated by cold plasma after UV-C treatment reduced the populations of inoculated microorganisms by 1.44, 2.70, 1.62 log CFU/g, respectively. The all treatment significantly (p < 0.05) reduced the populations of all inoculated bacteria compared to untreated lettuce. UV-C combined with cold plasma was the most effective for reducing the pathogenic bacteria on lettuce, by showing log-reductions of ${\geq}2.0\;log\;CFU/g$. All treatment was not significantly different until 6 day storage compared to control group in terms of appearance, texture and overall acceptability. Therefore, the combined treatment will be an effective intervention method to control the bacteria on lettuce.

본 연구에서는 양상추에 접종된 E. coli O157:H7, S. Typhimurium과 L. monocytogene에 대하여 저온 플라즈마와 UV-C 단독처리 및 병행처리 효과를 측정하였다. E. coli O157:H7, S. Typhimurium, L. monocytogenes는 양상추에 초기 농도가 5.82, 5.09, 5.65 log CFU/g이 되도록 각각 접종하였다. 저온 플라즈마와 UV-C를 처리된 양상추는 $4^{\circ}C$에서 9일간 보관하며 미생물학적 분석과 관능평가를 실시하였다. 저온 플라즈마 처리는 E. coli O157:H7, S. Typhimurium, L. monocytogenes의 개체 수를 각각 0.26, 0.65, 0.93 log CFU/g 수준으로 감소시켰다. 또한, UV-C 처리 시 각각 0.87, 0.88, 1.14 log CFU/g 수준으로 감소되었다. 또한 UV-C 처리 후 저온 플라즈마를 처리한 병행처리에서는 각각 1.44, 2.70, 1.62 log CFU/g 수준으로 감소하였다. 저온 플라즈마와 UV-C 단독처리 보다는 병행처리가 좀 더 효과적으로 균을 저감하는 것으로 판단되었다. 관능평가 결과는 외관, 질감, 전체적인 수용도 면에서 대조구와 비교하였을 때, 보관 6일까지 유의적인 차이가 없었다. 따라서 저온 플라즈마와 UV-C 병행처리는 양상추에 존재하는 균을 저감하기 위한 효과적인 기술로 활용될 수 있을 것으로 생각되었다.

Keywords

References

  1. Dolan C, Humphrey J: Governance and trade in fresh vegetables: the impact of UK supermarkets on the African horticulture industry. J. Dev. Stud. 37, 147-176 (2000). https://doi.org/10.1080/713600072
  2. Reardon T, Timmer CP, Barrett CB, Berdegue J: The rise of supermarkets in Africa, Asia, and Latin America. Am. J. Agr. Econ. 85, 1140-1146 (2003). https://doi.org/10.1111/j.0092-5853.2003.00520.x
  3. Harris L, Farber J, Beuchat L, Parish M, Suslow T, et al.: Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food. Sci. F. 2, 78-141 (2003). https://doi.org/10.1111/j.1541-4337.2003.tb00031.x
  4. CDC (Centers for Disease Control and Prevention): Available from: http://wwwn.cdc.gov/foodborneoutbreaks/Default.aspx. Accessed on Nov. 08, 2013 (2013).
  5. Sagong H-G, Lee S-Y, Chang P-S, Heu S, Ryu S, et al.: Combined effect of ultrasound and organic acids to reduce Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int. J. Food Microbiol. 145, 287-292 (2011). https://doi.org/10.1016/j.ijfoodmicro.2011.01.010
  6. Zhang S, Farber J: The effects of various disinfectants against Listeria monocytogenes on fresh-cut vegetables. Food Microbiol. 13, 311-321 (1996). https://doi.org/10.1006/fmic.1996.0037
  7. Beuchat L, Nail B, Adler B, Clavero M: Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. J. Food Protect. 61, 1305-1311 (1998). https://doi.org/10.4315/0362-028X-61.10.1305
  8. Gelinas P, Goulet J: Neutralization of the activity of eight disinfectants by organic matter. J. Appl. Bacteriol. 54, 243-247 (1983). https://doi.org/10.1111/j.1365-2672.1983.tb02613.x
  9. Kim J, Marshall MR, Du W-X, Otwell WS, Wei C-I: Determination of chlorate and chlorite and mutagenicity of seafood treated with aqueous chlorine dioxide. J. Agr. Food Chem. 47, 3586-3591 (1999). https://doi.org/10.1021/jf981397h
  10. Feng H, Sun P, Chai Y, Tong G, Zhang J, et al.: The interaction of a direct-current cold atmospheric-pressure air plasma with bacteria. IEEE T. Plasma Sci. 37, 121-127 (2009). https://doi.org/10.1109/TPS.2008.2008438
  11. Bai N, Sun P, Zhou H, Wu H, Wang R, et al.: Inactivation of Staphylococcus aureus in water by a cold, He/$O_2$ atmospheric pressure plasma microjet. Plasma Processes Polym. 8, 424-431 (2011). https://doi.org/10.1002/ppap.201000078
  12. Koban I, Matthes R, Hubner N-O, Welk A, Meisel P, et al.: Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J. Phys. 12, 073039 (2010). https://doi.org/10.1088/1367-2630/12/7/073039
  13. Escalona VH, Aguayo E, Martinez-Hernandez GB, Artes F: UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biol. Tec. 56, 223-231 (2010). https://doi.org/10.1016/j.postharvbio.2010.01.008
  14. Sizer C, Balasubramaniam V: New intervention processes for minimally processed juices. Food Technol. 53, 64-67 (1999).
  15. Park M-H, Kim J-G: Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biol. Tec. 100, 109-112 (2015). https://doi.org/10.1016/j.postharvbio.2014.09.013
  16. Martinez-Hernandez GB, Huertas J-P, Navarro-Rico J, Gomez PA, Artes F, et al.: Inactivation kinetics of foodborne pathogens by UV-C radiation and its subsequent growth in fresh-cut kailan-hybrid broccoli. Food microbiol. 46, 263-271 (2015). https://doi.org/10.1016/j.fm.2014.08.008
  17. Allende A, McEvoy JL, Luo Y, Artes F, Wang CY: Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed 'Red Oak Leaf' lettuce. Food Microbiol. 23, 241-249 (2006). https://doi.org/10.1016/j.fm.2005.04.009
  18. Lee K-H, Kim H-J, Woo KS, Jo C, Kim J-K, et al.: Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT-Food Sci. Technol. 73, 442-447 (2016). https://doi.org/10.1016/j.lwt.2016.06.055
  19. Cheon H-L, Shin J-Y, Park K-H, Chung M-S, Kang D-H: Inactivation of foodborne pathogens in powdered red pepper (Capsicum annuum L.) using combined UV-C irradiation and mild heat treatment. Food Control 50, 441-445 (2015). https://doi.org/10.1016/j.foodcont.2014.08.025
  20. Lim W, Harrison MA: Effectiveness of UV light as a means to reduce Salmonella contamination on tomatoes and food contact surfaces. Food Control 66, 166-173 (2016). https://doi.org/10.1016/j.foodcont.2016.01.043
  21. Lavelli, Vera: Antioxidant activity of minimally processed red chicory (Cichorium intybus L.) evaluated in xanthine oxidase-, myeloperoxidase-, and diaphorase-catalyzed reactions. J. Agr. Food Chem. 56.16: 7194-7200 (2008). https://doi.org/10.1021/jf801913v
  22. Pasquali, Frederique, et al.: Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control 60, 552-559 (2016). https://doi.org/10.1016/j.foodcont.2015.08.043