• Title/Summary/Keyword: UV photodetector

Search Result 32, Processing Time 0.033 seconds

Thin film growth of ε-Ga2O3 and photo-electric properties of MSM UV photodetectors (ε-Ga2O3 박막 성장 및 MSM UV photodetector의 전기광학적 특성)

  • Park, Sang Hun;Lee, Han Sol;Ahn, Hyung Soo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.179-186
    • /
    • 2019
  • In this study, we investigated the structural properties of $Ga_2O_3$ thin films and the photo-electrical properties of metal-semiconductor-metal (MSM) photodetectors deposited by Ti/Au electrodes. $Ga_2O_3$ thin films were grown at different temperatures using metal organic chemical vapor deposition (MOCVD). The crystal phase of $Ga_2O_3$ changed from ${\varepsilon}$-phase to ${\beta}$-phase depending on the growth temperature. The crystal structure of ${\varepsilon}-Ga_2O_3$ was confirmed by X-ray diffraction (XRD) analysis and the formation mechanism of crystal structure was discussed by scanning electron microscopy (SEM) images. From the results of current-voltage (I-V) and time-dependent photoresponse characteristics under the illumination of external lights, we confirmed that the MSM photodetector fabricated by ${\varepsilon}-Ga_2O_3$ showed much better photocurrent characteristics in the 266 nm UV range than in the visible range.

Real-time Spectroscopic Methods for Analysis of Organic Compounds in Water

  • Kim, Chihoon;Ji, Taeksoo
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.336-341
    • /
    • 2019
  • This paper proposes an optical system where the organic compound content in water is determined by using an ultraviolet (UV) LED (280 nm) and photodetector. The results obtained by the proposed prototype LED spectroscopy system, which includes a single photodetector and two parallel sample holders, are calculated by applying partial least square regression; the values are highly correlated with the actual concentrations of potassium hydrogen phthalate solutions, with an adjusted coefficient of determination about 0.996. Moreover, the total organic carbon values derived from the UV-Vis spectrometer of real samples (lake, river and sea water) differed little from those obtained by the LED spectroscopy. We confirm that the fast, sensitive, and compact LED sensor system can be readily configured for real-time monitoring of organic compounds in water.

Pt/AlGaN Schottky-Type UV Photodetector with 310nm Cutoff Wavelength

  • Kim, Bo-Kyun;Kim, Jung-Kyu;Park, Sung-Jong;Lee, Heon-Bok;Cho, Hyun-Ick;Lee, Young-Hyun;Hahn, Yoon-Bong;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.66-71
    • /
    • 2003
  • Pt/AlGaN Schottky-type UV photodetectors were designed and fabricated. A low-temperature AlGaN interlayer buffer was grown between the AlGaN and GaN film in the diode structure epitaxy to obtain crack-free AlGaN active layers. A comparison was then made of the structural, electrical, and optical characteristics of two different diodes: one with an AlGaN($0.5\;{\mu}m$)/n+-GaN(2 nm) structure (type 1) and the other with an AlGaN($0.5\;{\mu}m$)/AlGaN interlayer($150\;{\AA}$)/n+-GaN($3\;{\mu}m$) structure(type 2). A crack-free AlGaN film was obtained by the insertion of a low-temperature AlGaN interlayer with an aluminum mole fraction of 26% into the $Al_xGa_{1-x}N$ layer. The fabricated Pt/$Al_{0.33}Ga_{0.67}N$ photodetector had a leakage current of 1 nA for the type 1 diode and $0.1\;{\mu}A$ for the type 2 diode at a reverse bias of -5 V. For the photoresponse measurement, the type 2 diode exhibited a cut-off wavelength of 300 nm, prominent responsivity of 0.15 A/W at 280 nm, and UV-visible extinction ratio of $1.5{\times}10^4$. Accordingly, the Pt/$Al_{0.33}Ga_{0.67}N$ Schottky-type ultraviolet photodetector with an AlGaN interlayer exhibited superior electrical and optical characteristics and improved UV detecting properties.

Impact of Oxygen Annealing on Deep-level Traps in Ga2O3/SiC Photodetectors (산소 후열처리에 따른 Ga2O3/SiC photodetector의 전기 광학적 특성)

  • Seung-Hwan Chung;Tae-Hee Lee;Soo-Young Moon;Se-Rim Park;Hyung-Jin Lee;Geon-Hee Lee;Sang-Mo Koo
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.288-295
    • /
    • 2023
  • In this work, we investigated the role of oxygen annealing on the performance of Metal-Semiconductor-Metal (MSM) UV photodetector (PD) fabricated by radio frequency (RF)-sputtered Ga2O3 films on SiC substrates. Oxygen-nnealed Ga2O3 films displayed a notable increase in photocurrent and a faster decay time, indicating a decrease in persistent photoconductivity. This improvement is attributed to the reduction of oxygen vacancies and variation of defects by oxygen post-annealing. Our findings provide valuable insights into enhancing PD performance through oxygen annealing.

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Optical Ozone Monitor Using UV Source

  • Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.49-52
    • /
    • 2003
  • Two types of ozone monitors using UV absorption method were tried in consideration of cost of the monitor and precision in measuring. The high concentration ozone monitor for high concentration real time ozone monitoring from ozone generator was composed of a low pressure mercury lamp as UV source, a photo multiplier tube as UV detector and signal processing unit for the most part. This structure could be very useful for low price high concentration ozone monitor due to simple system structure and fairly good monitoring characteristics. The developed system showed good linear output characteristics to ozone in the measuring concentration range of 0.05 and 2 wt.%. For accuracy ambient ozone monitoring in ambient in ppm level, the system composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector and signal processing unit in brief speaking was proposed our study for the first time in the world. The developed system showed good linearity and sensitivity in relative low measuring range between 10ppm and 10,000ppm, and showed some feasibility of high resolution ozone monitor using CCD array as photodetector.

  • PDF

Fabrication of a Schottky Type Ultraviolet Photodetector Using GaN Layer (GaN를 이용한 Schottky diode형 자외선 수광소자의 제작)

  • Seong, Ik-Joong;Lee, Suk-Hun;Lee, Chae-Hyang;Lee, Yong-Hyun;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.6
    • /
    • pp.28-34
    • /
    • 1999
  • We fabricated a planar ultra-violet photodetector whose ohmic and schottky contacts were respectively formed with evaporated Al and Pt on the GaN layer. To examine the applicability of the device to the UV sensor, we investigated its electrical and optical characteristics. The GaN layer on the sapphire waver had $7.8{\times}10^{16}cm^{-3}$ of doping concentnation and the $138 cm^2/V{\cdot}s$ of electron mobility and it absorbed the spectrum of the light below 325 nm wavelength. It had the responsivity of 2.8 A/W of at 325 nm, and the signal to noise ratio(SNR) of $4{\times}10^4$, and the noise equivalent power(NEP) of $3.5{\times}10^9$W under 5 V reverse bias. These results confirmed that the GaN schottky diode had a solar blind properly when it was applied to the UV photodetector.

  • PDF

The Fabrication of ZnO UV Photodetector with p-type Inversion Layer and Analysis of Vrlph Properties (P형 반전층을 갖는 ZnO 자외선 수광소자의 제작과 Vrlph특성 분석)

  • Oh, Sang-Hyun;Kim, Deok-Kyu;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.883-888
    • /
    • 2007
  • Investigation of improving the properties of UV detector which uses the wide bandgap of ZnO are under active progress. The present study focused on the design and fabrication of i-ZnO/p-inversion $layer/n^--Si$ Epi. which is characterized with very thin p-type inversion layer for UV detectors. The i-ZnO thin film for achieving p-inversion layer which was grown by RF sputtering at $450^{\circ}C$ and then annealed at $400^{\circ}C$ in $O_2$ gas for 20 min shows good intrinsic properties. High (0002) peak intensity of the i-ZnO film is shown on XRD spectrum and it is confirmed by XPS analysis that the ratio of Zn : O of the i-ZnO film is nearly 1 : 1. Measurement shows high transmission of 79.5 % in UV range (< 400 nm) for the i-ZnO film. Measurement of $V_r-I_{ph}$ shows high UV photo-current of 1.2 mA under the reverse bias of 30 V.

A Study on the Material Characteristics of the NiO/ZnO Ultraviolet Sensor Based on Solution Process (용액 공정 기반 NiO/ZnO계 자외선 센서용 재료 특성 연구)

  • Moon, Seong-Cheol;Lee, Ji-Seon;No, Kyeong-Jae;Yang, Seong-Ju;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.508-513
    • /
    • 2017
  • Ultraviolet (UV) photodetectors are used in various industries and fields of research, including optical communication, flame sensing, missile plume detection, astronomical studies, biological sensors, and environmental research. However, general UV detectors that employ Schottky junction diodes and p-n junctions have high fabrication cost and low quantum efficiency. In this study, we investigated the characteristics of materials used to manufacture UV photodetectors in a low-cost solution process that requires easy fabrication of flexible substrates. We fabricated p-type NiO and n-type ZnO substrates with wide band gap by the sol-gel method and compared the characteristics of substrates prepared under different spin-coating and heat-treatment conditions.

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF