DOI QR코드

DOI QR Code

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju (School of Electronics Engineering, Kyungpook National University) ;
  • Hahm, Sung-Ho (School of Electronics Engineering, Kyungpook National University) ;
  • Park, Hongsik (School of Electronics Engineering, Kyungpook National University)
  • Received : 2019.05.25
  • Accepted : 2019.05.30
  • Published : 2019.05.31

Abstract

An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Keywords

HSSHBT_2019_v28n3_152_f0001.png 이미지

Fig. 1. (a) Micro-photograph image with the pad electrode names (scale bar, 100 μm), (b) circuit schematic, and (c) cross-sectional view with the epitaxial layer structure of the proposed GaN UV PPS.

HSSHBT_2019_v28n3_152_f0002.png 이미지

Fig. 2. Energy band structure of metal (ITO)/GaN contact interface with a Schottky barrier lowering effect using the gate bias at the gate overlapped region of the source contact.

HSSHBT_2019_v28n3_152_f0003.png 이미지

Fig. 3. (a) Dark and photoresponsive I–V characteristics and (b) spectral photoresponsivity characteristics of the fabricated GaN MSM UV sensor. The optical power density of a 365-nm UV light was 447 mW/㎠.

HSSHBT_2019_v28n3_152_f0004.png 이미지

Fig. 4. (a) Output IDS–VDS characteristics under dark, (b) output IDS– VDS characteristic under 365-nm UV irradiation, (c) linear and log-scale transfer IDS–VGS characteristics under dark, and (d) linear and log-scale transfer IDS–VGS characteristics under 365-nm UV irradiation of the fabricated GaN SB-MOSFET. The optical power density of a 365-nm UV light was 447 mW/㎠.

HSSHBT_2019_v28n3_152_f0005.png 이미지

Fig. 5. (a) Linear-scale and (b) log-scale output I–V characteristics of the fabricated GaN UV PPS with/without 365-nm UV irradiation. The GaN UV PPS was fabricated by integration of a GaN MSM UV sensor and a GaN SB-MOSFET.

References

  1. S. Sugiura, Y. Hayashi, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, and T. Tanaka, "Fabrication of normally-off mode GaN and AlGaN/GaN MOSFETs with $HfO_2$ gate insulator", Solid-State Electron., Vol. 54, No. 1, pp. 79-83, 2010. https://doi.org/10.1016/j.sse.2009.10.007
  2. K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, "Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure with Extremely High 2DEG Density Grown on Silicon Substrate", IEEE Electron Device Lett., Vol. 31, No. 3, pp. 192-194, 2010. https://doi.org/10.1109/LED.2009.2039024
  3. D. S. Kim, K. S. Im, K. W. Kim, H. S. Kang, D. K. Kim, S. J. Chang, Y. Bae, S. H. Hahm, S. Cristoloveanu, and J. H. Lee, "Normally-off GaN MOSFETs on insulating substrate", Solid-State Electron., Vol. 90, pp. 79-85, 2013. https://doi.org/10.1016/j.sse.2013.02.048
  4. W. Huang, T. Khan, and T. P. Chow, "Enhancement-Mode n-Channel GaN MOSFETs on p and n-GaN/Sapphire Substrates", IEEE Electron Device Lett., Vol. 27, No. 10, pp. 796-798, 2006. https://doi.org/10.1109/LED.2006.883054
  5. H. Kambayashi, Y. Niiyama, S. Ootomo, T. Nomura, M. Iwami, Y. Satoh, S. Kato, and S. Yoshida, "Normally Off n-Channel GaN MOSFETs on Si Substrates Using an SAG Technique and Ion Implantation", IEEE Electron Device Lett., Vol. 28, No. 12, pp. 1077-1079, 2007. https://doi.org/10.1109/LED.2007.909978
  6. Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, and C. C. Tsai, "Inversion-channel GaN metal-oxide-semiconductor field-effect transistor with atomic-layer-deposited $Al_2O_3$ as gate dielectric", Appl. Phys. Lett., Vol. 93, No. 5, pp. 053504(1)-053504(3), 2008 https://doi.org/10.1063/1.2969282
  7. D. K. Kim, D. S. Kim, S. J. Chang, C. J. Lee, Y. Bae, S. Cristoloveanu, J. H. Lee, and S. H. Hahm, "Performance of GaN Metal-Oxide-Semiconductor Field-Effect Transistor with Regrown n+-Source/Drain on a Selectively Etched GaN", Jpn. J. Appl. Phys., Vol. 52, No. 6R, pp. 061001(1)-061001(5), 2013.
  8. H. B. Lee, H. I. Cho, H. S. An, Y. H. Bae, M. B. Lee, J. H. Lee, and S. H. Hahm, "A Normally Off GaN n-MOSFET With Schottky-Barrier Source and Drain on a Si-Auto-Doped p-GaN/Si", IEEE Electron Device Lett., Vol. 27, No. 2, pp. 81-83, 2006. https://doi.org/10.1109/LED.2005.862675
  9. D. S. Kim, T. H. Kim, C. H. Won, H. S. Kang, K. W. Kim, K. S. Im, Y. S. Lee, S. H. Hahm, J. H. Lee, J. H. Lee, J. B. Ha, Y. Bae, and S. Cristoloveanu, "Performance enhancement of GaN SB-MOSFET on Si substrate using two-step growth method", Microelectron. Eng., Vol. 88, No. 7, pp. 1221-1224, 2011. https://doi.org/10.1016/j.mee.2011.03.119
  10. T. Tut, T. Yelboga, E. Ulker, and E. Ozbay, "Solar-blind AlGaN-based p-i-n photodetectors with high breakdown voltage and detectivity", Appl. Phys. Lett., Vol. 92, No. 10, pp. 103502(1)-103502(3), 2008. https://doi.org/10.1063/1.2895643
  11. X. D. Wang, W. D. Hu, X. S. Chen, J. T. Xu, X. Y. Li, and W. Lu, "Photoresponse study of visible blind GaN/AlGaN p-i-n ultraviolet photodetector", Opt. Quantum Electron., Vol. 42, No. 11-13, pp. 755-764, 2011. https://doi.org/10.1007/s11082-011-9473-8
  12. K. H. Lee, P. C. Chang, S. J. Chang, and S. L. Wu, "GaN-based Schottky barrier ultraviolet photodetector with a 5-pair AlGaN-GaN intermediate layer", Phys. Stattus Solidi A, Vol. 209, No. 3, pp. 579-584, 2012 https://doi.org/10.1002/pssa.201127545
  13. C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, S. C. Chen, C. S. Chang, T. K. Lin, H. L. Liu, and J. J. Tang, "GaN MSM UV Photodetectors With Titanium Tungsten Transparent Electrodes", IEEE Trans. Electron Devices, Vol. 53, No. 1, pp. 38-42, 2006. https://doi.org/10.1109/TED.2005.860780
  14. F. Xie, H. Lu, D. J. Chen, X. Q. Xiu, H. Zhao, R. Zhang, and Y. D. Zheng, "Metal-Semiconductor-Metal Ultraviolet Avalanche Photodiodes Fabricated on Bulk GaN Substrate", IEEE Electron Device Lett., Vol. 32, No. 9, pp. 1260-1262, 2011. https://doi.org/10.1109/LED.2011.2160149
  15. M. Girolami, P. Allegrini, G. Conte, D. M. Trucchi, V. G. Ralchenko, and S. Salvatori, "Diamond Detectors for UV and X-Ray Source Imaging", IEEE Electron Device Lett., Vol. 33, No. 2, pp. 224-226, 2012. https://doi.org/10.1109/LED.2011.2176907
  16. P. E. Malinowski, J.-Y. Duboz, P. D. Moor, J. John, K. Minoglou, P. Srivastava, F. Semond, E. Frayssinet, B. Giordanengo, A. BenMoussa, U. Kroth, A. Gottwald, C. Laubis, R. Mertens, and C. V. Hoof, "AlGaN-on-Si-Based $10-{\mu}m$ Pixel-to-Pixel Pitch Hybrid Imagers for the EUV Range", IEEE Electron Device Lett., Vol. 32, No. 11, pp. 1561-1563, 2011. https://doi.org/10.1109/LED.2011.2163615