• Title/Summary/Keyword: UV and fluorescence detection

Search Result 60, Processing Time 0.023 seconds

Oil Fluorescence Spectrum Analysis for the Design of Fluorimeter (형광 광도계 설계인자 도출을 위한 기름의 형광 스펙트럼 분석)

  • Oh, Sangwoo;Seo, Dongmin;Ann, Kiyoung;Kim, Jaewoo;Lee, Moonjin;Chun, Taebyung;Seo, Sungkyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.304-309
    • /
    • 2015
  • To evaluate the degree of contamination caused by oil spill accident in the sea, the in-situ sensors which are based on the scientific method are needed in the real site. The sensors which are based on the fluorescence detection theory can provide the useful data, such as the concentration of oil. However these kinds of sensors commonly are composed of the ultraviolet (UV) light source such as UV mercury lamp, the multiple excitation/emission filters and the optical sensor which is mainly photomultiplier tube (PMT) type. Therefore, the size of the total sensing platform is large not suitable to be handled in the oil spill field and also the total price of it is extremely expensive. To overcome these drawbacks, we designed the fluorimeter for the oil spill detection which has compact size and cost effectiveness. Before the detail design process, we conducted the experiments to measure the excitation and emission spectrum of oils using five different kinds of crude oils and three different kinds of processed oils. And the fluorescence spectrometer were used to analyze the excitation and emission spectrum of oil samples. We have compared the spectrum results and drawn the each common spectrum regions of excitation and emission. In the experiments, we can see that the average gap between maximum excitation and emission peak wavelengths is near 50 nm for the every case. In the experiment which were fixed by the excitation wavelength of 365 nm and 405 nm, we can find out that the intensity of emission was weaker than that of 280 nm and 325 nm. So, if the light sources having the wavelength of 365 nm or 405 nm are used in the design process of fluorimeter, the optical sensor needs to have the sensitivity which can cover the weak light intensity. Through the results which were derived by the experiment, we can define the important factors which can be useful to select the effective wavelengths of light source, photo detector and filters.

Polymeric nanoparticles as dual-imaging probes for cancer management

  • Menon, Jyothi U.;Jadeja, Parth;Tambe, Pranjali;Thakore, Dheeraj;Zhang, Shanrong;Takahashi, Masaya;Xie, Zhiwei;Yang, Jian;Nguyen, Kytai T.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.3
    • /
    • pp.129-140
    • /
    • 2016
  • This article reports the development of biodegradable photoluminescent polymer (BPLP)-based nanoparticles (NPs) incorporating either magnetic nanoparticles (BPLP-MNPs) or gadopentate dimeglumine (BPLP-Gd NPs), for cancer diagnosis and treatment. The aim of the study is to compare these nanoparticles in terms of their surface properties, fluorescence intensities, MR imaging capabilities, and in vitro characteristics to choose the most promising dual-imaging nanoprobe. Results indicate that BPLP-MNPs and BPLP-Gd NPs had a size of $195{\pm}43nm$ and $161{\pm}55nm$, respectively and showed good stability in DI water and 10% serum for 5 days. BPLP-Gd NPs showed similar fluorescence as the original BPLP materials under UV light, whereas BPLP-MNPs showed comparatively less fluorescence. VSM and MRI confirmed that the NPs retained their magnetic properties following encapsulation within BPLP. Further, in vitro studies using HPV-7 immortalized prostate epithelial cells and human dermal fibroblasts (HDFs) showed > 70% cell viability up to $100{\mu}g/ml$ NP concentration. Dose-dependent uptake of both types of NPs by PC3 and LNCaP prostate cancer cells was also observed. Thus, our results indicate that BPLP-Gd NPs would be more appropriate for use as a dual-imaging probe as the contrast agent does not mask the fluorescence of the polymer. Future studies would involve in vivo imaging following administration of BPLP-Gd NPs for biomedical applications including cancer detection.

Liquid chromatographic enantioseparation of several amino acids as nitrobenzoxadiazole derivatives on polysaccharide trisphenylcarbamate derived chiral stationary phases

  • Suraj Adhikari;Alisha Bhandari;Wonjae Lee
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.143-151
    • /
    • 2023
  • Considering the greater role of α-amino acids in our daily lives, the enantiomer resolution of seven α-amino acids derivatized with fluorogenic reagent (4-fluoro-7-nitro-2,1,3-benzoxadiazole, NBD-F) by chiral HPLC on amylose or cellulose trisphenylcarbamate derived chiral stationary phases (CSPs) under simultaneous ultraviolet (UV) and fluorescence (FL) detection was performed. The degree of enantioseparation and resolution was affected by nature and selector backbones of the CSPs as well as the kind of amino acids. Baseline enantiomer separation and resolutions were observed for the enantiomers of all analytes as NBD derivatives especially on coated type amylose tris(3,5-dimethylphenylcarbamate) derived CSPs (Chiralpak AD-H and Lux Amylose-1). The other CSPs also showed good enantioselectivity except for the CSPs (Chiralpak IB, Chiralcel OD-H and Lux Cellulose-1) having cellulose tris(3,5-dimethylphenylcarbamate) as chiral selectors. The developed analytical chiral method was applied to determine the enantiomeric purity of seven commercially available L-α-amino acids and the impurities as D-forms were found to be in the range 0.08-0.87 %, respectively. The intra- and interday accuracy and precision assays showed high accuracy and precision of the developed analytical method. This chiral HPLC method for the enantiomer resolution of amino acids using fluorescent derivatization could be useful for the determination of enantiomeric purity of pharmaceuticals and biological study for amino acid type compounds among chiral drugs.

Trends of Deep UV-LED Technology for the Pathogen and Biotoxin Aerosol Detection System (병원균 및 생물독소 탐지시스템을 위한 원자외선 LED 기술동향)

  • Chong, Eugene;Jeong, Young-Su;Choi, Kibong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • The humans are under attack involving the hazardous environment and pathogen/biotoxin aerosol that is realistic concerned. A portable, fast, reliable, and cheap Pathogen and Biotoxin Aerosol threat Detection(PBAD) trigger is an important technology for detect-to-protect and detect-to-treat system because the man-made biological terror is a fast and lethal infection. The ultraviolet C(UVC) wavelengths light source is key issue for PBAD that is sensitive because of strong fluorescence cross section from fluorescent amino acids in proteins such as tryptophan and tyrosine. The UVC-light emitting diode(LED) is emerging light source technology as alternative to laser or lamps as they offer several advantages. This paper discussed about the design consideration of UVC-LED for the PBAD system. The UVC-LED and PBAD technology, currently available or in development, are also discussed.

Study on Bead-based Microbiochip and Analytical System for Protein Detection

  • Kim, Min-Soo;Chung, Woo-Jae;Cho, Su-Hyung;Park, Sung-Soo;Kim, Byung-Gee;Lee, Young-Sik;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.60-63
    • /
    • 2002
  • This paper presents bead-based microbiocihps to detect and separate target proteins. Micro beads coated with capture proteins were introduced into a microchamber, and target proteins flowing across the chamber were bound and concentrated. The chip was connected with an external fluid system. Bead surfaces were double-coated with photo-cleavable linkers and capture proteins. The proteins bound on the beads were photo-separated under UV irradiation, and excited to be measured in fluorescence. $38{\sim}50{\mu}m$ sized polystyrene beads were used. SOGs(silicon-on-glass) were used to fabricate the microchip having glasses bonded on both sides. 100 ${\mu}m$ thick silicon channel was formed through silicon deep RIE process. The upper glass cover had holed through to have inlets and outlets fabricated by powder-blastings. In this study, biotin and streptavidin were used as capture proteins and detection proteins, respectively. The protein mixtures of streptavidin, HSA(human serum albumin) and ovalbumin were applied for selective detection test.

  • PDF

Development of Differential Media and Multiplex PCR Assays for the Rapid Detection of Listeria monocytogenes (Listeria monocytogenes의 신속검출을 위한 선택배지 및 multiplex PCR 기법 개발)

  • Jung, Byeong-yeal;Lim, Hyun-sook;Jung, Suk-chan
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.2
    • /
    • pp.231-237
    • /
    • 2003
  • Listeria (L.) monocytogenes in samples could not be detected occasioally by faster growth of other Listeria spp. especially L. innocua. The aim of this study was to develop the differential media and multiplex polymerase chain reaction (PCR) assays for the rapid detection of L. monocytogenes. L. monocytogenes colonies were characterized by their ${\beta}$-hemolysis with fluorescence under 366 nm UV light on the Listeria hemolysis agar (LHA). L. innocua, a species commonly present in foods, did not produce ${\beta}$-hemolysis on LHA. Therefore, one or more colonies of L. monocytogenes were easily distinguished from large populations of L. innocua. The multiplex PCR assays were developed to distinguish from L. monocytogenes and other Listeria spp. with two pairs of primers. The primers were designed in 16S rRNA and listeriolysin O gene for specific amplification of all members of the genus Listeria and L. monocytogenes, respectively. The multiplex PCR assays produced 560 and 938 bp products in L. monocytogenes; only 938 bp products in the genus Listeria. The multiplex PCR assays could detect as little as 50 pg of L monocytogenes DNA. These results indicated that the differential media and multiplex PCR assays might be useful diagnostic tools for the rapid detection of L. monocytogenes.

The Use of a Tobacco mosaic virus-Based Expression Vector System in Chrysanthemum

  • Park, Minju;Baek, Eseul;Yoon, Ju-Yeon;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.429-433
    • /
    • 2017
  • Chrysanthemums (Chrysanthemum morifolium) are susceptible to tobacco mosaic virus (TMV). TMV-based expression vectors have been used in high-throughput experiments for production of foreign protein in plants and also expressing green fluorescent protein (GFP) to allow visualization of TMV movement. Here, we used TMV expressing the GFP to examine the infection of chrysanthemum by a TMV-based expression vector. Viral replication, movement and GFP expression by TMV-GFP were verified in upper leaves of chrysanthemums up to 73 days post inoculation (dpi) by RT-PCR. Neither wild-type TMV nor TMV-GFP induced symptoms. GFP fluorescence was seen in the larger veins of the inoculated leaf, in the stem above the inoculation site and in petioles of upper leaves, although there was no consistent detection of GFP fluorescence in the lamina of upper leaves under UV. Thus, a TMV-based expression vector can infect chrysanthemum and can be used for the in vivo study of gene functions.

A Study on Standardization of Shinbaro Pharmacopuncture Using Herbal Medicines Identification Test and HPLC-DAD (신바로 약침의 한약재 확인시험 및 HPLC-DAD를 통한 표준화 연구)

  • Lee, Jin Ho;Kim, Min Jeong;Lee, Jae Woong;Kim, Me Riong;Lee, In Hee;Kim, Eun Jee
    • Journal of Acupuncture Research
    • /
    • v.32 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Objectives : The present study was an evaluation and standardization of herbal components in order to establish the efficacy and safety of Shinbaro pharmacopuncture. Methods : Among the raw materials of Shinbaro pharmacopuncture, the components Cibotii Rhizoma, Eucommiae Cortex, and Ledebouriellae Radix were assessed through ingredient verification experiments using thin-layer chromatography(TLC) and ultraviolet rays(UV) lamps. In addition, we standardized Acanthopanacis Cortex and Achyranthis Radix through validation using high performance liquid chromatograph-diode array detector(HPLC-DAD). Results : As result appeared a blue-white fluorescence under ultraviolet rays; changed to dark green after adding 1 % ferric chloride solution(due to Cibotii Rhizoma), and presented a yellow-green fluorescence when mixed with an ethyl ether under UV lamps by way of the ethyl ether layer, confirming Eucommiae Cortex. Ledebouriellae Radix was confirmed as dark brown spots at Rf values of 0.56 and 0.71 using TLC. Additionally, Acanthopanacis Cortex and Achyranthis Radix HPLC test results showed that linearity was $R^2{\geq}0.99$, and detection limit and quantitation limit were 0.23 to $1.29{\mu}g/mL$, and 0.71 to $3.90{\mu}g/mL$, respectively. Furthermore, precision and accuracy were confirmed to have relative standard deviation(RSD) values of 0.10 to 1.89 % and 96.19 to 103.72 %, respectively. Shinbaro pharmacopuncture did not have any overlapping or interference from other peaks in detection under the abovementioned analysis conditions. Conclusions : In conclusion, we confirmed that maintenance of Shinbaro pharmacopuncture validity was possible by means of quality control of Cibotii Rhizoma, Eucommiae Cortex, and Ledebouriellae Radix through ingredient identification and Acanthopanacis Cortex and Achyranthis Radix through high performance liquid chromatograph(HPLC) analysis. Further, we hope to contribute to the development strategy of herbal industry acupuncture.

Optical sensing techniques for simultaneous detection of nanoparticles and microorganisms in water (수질내 초미립자와 미생물의 동시 검출을 위한 광학센서기술)

  • Sohn, Ok-Jae;Hyung, Gi-Woo;Kim, Byung-Seb;Rhee, Jong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.157-161
    • /
    • 2008
  • An optical sensor was developed to detect nanoparticles, turbid materials and microorganisms in water simultaneously. Three different light sources like UV-LED, NIR-LED and laser diode have been employed to develop the optical sensor based on the scattering light and fluorescence light. The sensor system has high selectivity and sensitivity, that it can be used to monitor the quality of drinking water.

Detection of Hydrofluoric Acid Using Cadmium Selenide Nanoparticles (카드뮴 셀레나이드 나노입자를 이용한 HF의 감지)

  • Kim, Sungjin
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.112-116
    • /
    • 2010
  • Prepared CdSe nanoparticles were systems, one of the most studied and useful nanostructures. Semiconductor quantum dots (QDs) have been the subject of much interest for both fundamental reseach and technical applications in recent years, due mainly to their strong size dependent properties and excellent chemical processibility. CdSe nanocrystals were synthesized by using sol-gel process. Synthesized CdSe quantum dots were studied to evaluate the optical, electronic and structural properties using UV-absorption, and photoluminescence (PL) measurement. Prepared CdSe nanoparticles were subjected to sense hydrofluoric acid. Photoluminescence was quenched upon adding of hydrofluoric acid.