• Title/Summary/Keyword: UV absorption

Search Result 1,104, Processing Time 0.033 seconds

Microstructure and Magnetic Properties of Pulsed DC Magnetron Sputtered Zn0.8Co0.2O Film Deposited at Various Substrate Temperatures (증착온도를 달리하여 제조한 Zn0.8Co0.2O 박막의 미세조직 및 자기 특성)

  • Kang, Young-Hun;Kim, Bong-Seok;Tai, Weon-Pil;Kim, Ki-Chul;Suh, Su-Jeung;Park, Tae-Seok;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.79-84
    • /
    • 2006
  • We studied the microstructure and magnetic property of the pulsed DC magnetron sputtered $Zn_{\0.8}Co_{0.2}O$ film as a function of substrate temperatures. The X-ray patterns of the $Zn_{\0.8}Co_{0.2}O$ film showed a strong (002) preferential orientation at $500^{\circ}C$. The films with a crystallite size of 23-35 nm were grown in the form of nano-sized structure and this tendency was remarkable with increasing substrate temperature. The UV-visible result showed that the $Zn_{\0.8}Co_{0.2}O$ film prepared above $300^{\circ}C$ has a high optical transmittance of over $80\%$ in the visible region. The absorption bands were observed due to sp-d interchange action by $Co^{2+}$ complex ion and dd transition in the region from 500 to 700nm. The resistivity of the film was below $10^{-1}\;\Omega-cm\;above\;300^{\circ}C$. The AGM analysis results for the all films showed the magnetic hysteresis curves of ferromagnetic nature. The low electrical resistivity and room temperature ferromagnetism of ZnCoO thin films 'deposited above $300^{\circ}C$ suggested the possibility for the application to Diluted Magnetic Semiconductors (DMSs).

Synthesis of Porous TiO2-SiO2 Particles by Self-assembly of Nanoparticles (나노입자들의 자기조립에 의한 TiO2-SiO2 다공체 제조)

  • Oh, Kyoung Joon;Kim, Sun Kyung;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.7 no.3
    • /
    • pp.79-85
    • /
    • 2011
  • Porous $TiO_2-SiO_2$ particles were synthesized by co-assembly of nanoparticles of $TiO_2$ and $SiO_2$ in evaporating aerosol droplets. Poly styrene latex (PSL) particles were employed as a template of porous particles. Flowrate of dispersion gas, weight ratio of $TiO_2/SiO_2$ and $SiO_2$ concentration in the precursor, and PSL size were chosen as process variables. The morphology, crystal structure, chemical bonding, and pore size distribution were analyzed by FE-SEM, XRD, FT-IR, BET. The morphology of porous $TiO_2-SiO_2$ particles was spherical and the average particle size range were from 1 to $10{\mu}m$. The particles were composed of meso and macro pores. The average particle diameter and pore volume of the as prepared particles were dependant on process variables. It was found that UV-Vis absorption of the porous particles was comparable with pure $TiO_2$ nanoparticles even though $TiO_2/SiO_2$ ratio is low in the porous particles.

Aerosol-gel synthesis of ZnO quantum dots dispersed in SiO2 matrix and their characteristics (에어로솔-젤 법을 이용한 SiO2에 분산된 ZnO 양자점의 합성과 그 특성)

  • Kim, Sang-Gyu;Firmansyah, Dudi Adi;Lee, Kwang-Sung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.51-59
    • /
    • 2010
  • ZnO quantum dots embedded in a silica matrix without agglomeration were synthesized from $TEOS:Zn(NO_3)_2$ solutions in one-step process by aerosol-gel method. It was successfully demonstrated that the size of ZnO Q-dots could be controlled from 2 to 7 mm verified by a high resolution transmission electron microscope observation. The line scanning energy dispersive X-ray spectroscopy(EDS) revealed that the Q-dots existed preferentially inside SiO2 sphere when Zn/Si < 0.5. However, the Q-dots distributed homogeneously all over the sphere when Zn/Si > 1.0. Blue-shifted UV/Vis absorption peak observation confirmed the quantum size effect on the optical properties. The photoluminescence(PL) emission peaks of the powders at room temperature were consistent with previous reports in the following aspects: 1) PL characteristics are dominated by two peaks of deep-level defect-related emissions at 2.4 - 2.8 eV, 2) the first defect-related peak at 2.4 eV was blue shifted due to the quantum size effect with decreasing the concentration of $Zn(NO_3)_2$(decreasing the size of ZnO q dots). More interestingly, the existence of surface-exposed ZnO q dots affects greatly the second defect PL peak at 2.8 eV.

Studies on Metal Complex Formation of Poly (styrene-co-Acrylic acid) (스틸렌-아크릴산계 공중합체의 금속착물 형성에 관한 연구)

  • Kim, Kong-Soo;Kim, Soo-Jong;Cho, Suk-Hyeong;Chun, Yong-Chul
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.70-76
    • /
    • 1991
  • Water soluble poly(sulfonated styrene-co-acrylic acid) was polymerized with sulfonated styrene and acrylic acid in the presence of silver sulfate at $99^{\circ}C$ for 4 hrs. The complex formation of poly(sulfonated styrene-co-acrylic acid) with Cu(II) was carried out. The maximum absorption wavelength of the poly(sulfonated styrene-co-acrylic)-Cu(II) system at different pH values was observed at 274 nm and 295 nm. The reduced viscosity of the poly(sulfonated styrene-co-acrylic acid)-Cu(II) complex were measured in the various pH ranges. The formation constants and stability constants of poly(sulfonated styrene-co-acrylic acid)-Cu(II) complex were calculated from Bjerrum method. The changes of enthalpy, free energy and entropy in the above reaction were determined by Ringbom method.

  • PDF

Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD (플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과)

  • 김현철;이재신
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4, CH_4,\;and\; B_2H_6$. Physical and chemical properties of a-SiC:H films grown with varing the ratio of $B_2H_6/(SiH_4+CH_4)$ were characterized with various analysis methods including scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, secondary ion mass spectroscopy (SIMS), UV absorption CH_4spectroscopy and electrical conductivity measurements. With the B-doping concentration, the doping efficiency and the micro-crystallinity were decreased and the film became amorphous when $B_2H_6/(SiH_4{plus}CH_4)$ was over $5{\times}10^{-3}$. The addition of $B_2H_6$ gas during deposition decreased the H content in the film by lowering the quantity of Si-C-H bonds. Consequently, the optical band gap and the activation energy of a-SiC:H films were decreased with increasing the B-doping level.

  • PDF

Properties of Dye Sensitized Solar Cells with Porous TiO2 Layers Using Polymethyl-Methacrylate Nano Beads

  • Choi, Minkyoung;Noh, Yunyoung;Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.194-199
    • /
    • 2016
  • We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the $TiO_2$ layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with $0.45cm^2$ active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the $TiO_2$ layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the $TiO_2$ layer was determined to be an effective method for improving the ECE of a DSSC.

A Study for Oxidants Generation on Oxygen-plasma Discharging Process Discharging System (산소-플라즈마 공정에서 산화제의 생성에 대한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1561-1569
    • /
    • 2013
  • This study carried out a laboratory scale plasma reactor about the characteristics of chemically oxidative species (${\cdot}OH$, $H_2O_2$ and $O_3$) produced in dielectric barrier discharge plasma. It was studied the influence of various parameters such as gas type, $1^{st}$ voltage, oxygen flow rate, electric conductivity and pH of solution for the generation of the oxidant. $H_2O_2$ and $O_3$.) $H_2O_2$ and $O_3$ was measured by direct assay using absorption spectrophotometry. OH radical was measured indirectly by measuring the degradation of the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical). The experimental results showed that the effect of influent gases on RNO degradation was ranked in the following order: oxygen > air >> argon. The optimum $1^{st}$ voltage for RNO degradation were 90 V. As the increased of $1^{st}$ voltage, generated $H_2O_2$ and $O_3$ concentration were increased. The intensity of the UV light emitted from oxygen-plasma discharge was lower than that of the sun light. The generated hydrogen peroxide concentration and ozone concentration was not high. Therefore it is suggested that the main mechanism of oxidation of the oxygen-plasma process is OH radical. The conductivity of the solution did not affected the generation of oxidative species. The higher pH, the lower $H_2O_2$ and $O_3$ generation were observed. However, RNO degradation was not varied with the change of the solution pH.

Photocatalytic Activity of Hierarchical N doped TiO2 Nanostructures

  • Naik, Brundabana;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.669-669
    • /
    • 2013
  • Hierarchical N doped TiO2 nanostructured catalyst with micro, meso and macro porosity have been synthesized by a facile self-formation route using ammonia and titanium isopropoxide precursor. The samples were calcined in different calcination temperature ranging from $300^{\circ}C$ to $800^{\circ}C$ at slow heating rate ($5^{\circ}C$/min) and designated as NHPT-300 to NHPT-800. $TiO_2$ nanostructured catalyst have been characterized by physico-chemical and spectroscopy methods to explore the structural, electronic and optical properties. UV-Vis diffuse reflectance spectra confirmed the red shift and band gap narrowing due to the doping of N species in TiO2 nanoporous catalyst. Hierarchical macro porosity with fibrous channel patterning was observed (confirmed from FESEM) and well preserved even after calcination at $800^{\circ}C$, indicating the thermal stability. BET results showed that micro and mesoporosity was lost after $500^{\circ}C$ calcination. The photocatalytic activity has been evaluated for methanol oxidation to formaldehyde in visible light. The enhanced photocatalytic activity is attributed to combined synergetic effect of N doping for visible light absorption, micro and mesoporosity for increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.

  • PDF

The Effect of Surface Defects on the Optical Properties of ZnSe:Eu Quantum Dots (ZnSe:Eu 양자점의 표면결함이 광학특성에 미치는 영향)

  • Jeong, Da-Woon;Park, Ji Young;Seo, Han Wook;Lim, Kyoung-Mook;Seong, Tae-Yeon;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.348-352
    • /
    • 2016
  • Quantum dots (QDs) are capable of controlling the typical emission and absorption wavelengths because of the bandgap widening effect of nanometer-sized particles. These phosphor particles have been used in optical devices, photovoltaic devices, advanced display devices, and several biomedical complexes. In this study, we synthesize ZnSe QDs with controlled surface defects by a heating-up method. The optical properties of the synthesized particles are analyzed using UV-visible and photoluminescence (PL) measurements. Calculations indicate nearly monodisperse particles with a size of about 5.1 nm at $260^{\circ}C$ (full width at half maximum = 27.7 nm). Furthermore, the study results confirm that successful doping is achieved by adding $Eu^{3+}$ preparing the growth phase of the ZnSe:Eu QDs when heating-up method. Further, we investigate the correlation between the surface defects and the luminescent properties of the QDs.

A Study on the Application of Dobak-glue for Fixation Painting Layer of Earthen Mural (토벽화 채색층 고착처리를 위한 도박풀 적용 연구)

  • Kim, Seol Hui;Han, Kyeong Soon;Lee, Hwa Soo
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.553-564
    • /
    • 2017
  • This report compared and analyzed the degree of surface change and results of a deterioration experiment to assess the possibility of using Dobak glue as an adhesive in the fossilizing treatment of the paint layer in earthen mural paintings. The weathering experiments were performed with a color-difference meter (CR-400, MINOLTA). After the experiment, Cinnabar 3% specimens, which exhibited diverse changes in the durability test, were additionally tested with a reflection-transmission device (CARY-5000, AGILENT). Post UV degradation, most of the Dobak-glue samples exhibited lesser color change than animal-glue samples, and after moisture absorption and drying, the 0.5% and 3% Dobak samples displayed a lower degree of change in the value of color difference. Furthermore, results of the reflection-transmission test after deterioration indicated that Dobak glue presented a lesser color change than animal glue. Therefore, if Dobak glue is used as a consolidating agent, discoloration on account of degradation is minimal.