• 제목/요약/키워드: UV Fluorescence Reaction

검색결과 44건 처리시간 0.027초

자외선 형광반응을 이용한 오폐수 검출장치 개발 (Development of a Wastewater Detection System using UV Fluorescence Reaction)

  • 김병창
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.28-33
    • /
    • 2020
  • Oil-related products have provided many benefits to humanity, but are significant contributors to environmental pollution. As per the International Maritime Organization (IMO) requirements, in the future, all ships must be equipped with filtering equipment and 5ppm bilge alarms that can help remove or reduce oil products during wastewater treatment. In this study, a UV fluorescence measurement system that can detect the oil components in wastewater containing both water and oil was developed. When an excitation wavelength of 254nm was used to irradiate the wastewater, the amount of UV at a divergent wavelength of 360nm was measured to measure the contamination. Based on the measurement, it was concluded that this system is suitable for use as the 5ppm bilge alarm proposed by IMO.

Preconcentration and Detection of Herbicides in Water by Using the On-line SPE-HPLC System and Photochemical Reaction

  • 이승호;이성광;박영훈;김현주;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권10호
    • /
    • pp.1165-1171
    • /
    • 1999
  • The analysis of trace herbicides using the on-line SPE-HPLC system and a photochemical reaction was studied. 18 compounds of herbicides including eight triazines, six phenoxy acids and esters, and four other herbicides were examined. The on-line SPE-HPLC system developed for selection of eluting solvent improved chromatographic efficiency. The recoveries of herbicides were higher than 77%. With 100 mL tap water samples, the detection limits for all analytes were in the 0.1-2.3×10-10 M range. Detection was done by a UV or fluorescence spectrometer after photochemical reaction at the end of the column with 2W or 450W mercury lamp. Without a photochemical reaction, all compounds responded to 230 nm UV detector, but phenoxy acids and esters were weakly detected. However, with a photochemical reaction, these compounds were selectively detected at 320 nm wavelength of UV absorption and 400 nm emission of the fluorescence detectors. This method can be used for the analysis of environmental water containing herbicides at trace levels.

Photocycloaddition Reaction of 1,2-Bispyrazylethylene to Tetracyanoethylene

  • Shim, Sang-Chul;Shim, Hyun-Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제1권4호
    • /
    • pp.123-126
    • /
    • 1980
  • Benzene solution of trans-1,2-bispyrazylethylene and electron deficient olefin, tetracyanoethylene, as a ${\pi}$-acceptor gave 1,2-bispyrazyl-3,3,4,4-tetracyanocyclobutane, a 2${\pi}$ + 2${\pi}$ cycloaddition product, on irradiation with 350 nm UV light. Fluorescence studies revealed the reaction to proceed through a singlet exciplex. The fluorescence of trans-1,2-bispyrazylethylene was quenched very efficiently by tetracyanoethylene with the quenching constant of 1.6 ${\times}$ 10$^{10}$M$^{-1}$s$^{-1}$ while electron rich olefin, tetramethylethylene, did not quench the fluorescence of bispyrazylethylene.

광화학 반응을 이용한 티오카바메이트류의 액체 크로마토그래피 검출법에 관한 연구 (A Study of Liquid Chromatographic Detection Method for Thiocarbamates by Using Photochemical Reaction)

  • 이대운;박영훈;최용욱
    • 대한화학회지
    • /
    • 제37권4호
    • /
    • pp.453-461
    • /
    • 1993
  • 테프론 코일과 저압 수은 램프를 사용, 간단하게 제작된 광화학 반응기를 이용한 HPLC 검출 방법을 연구하였다. 4종의 티오카바메이트 시료들을검출함에 있어 UV, 형광 및 전기화학 검출기 등에서 광화학 반응을 통한 액체 크로마토그래피 후컬럼 검출법의 유용성을 알아보았다. 액체 크로마토그래피를 통해 분리된 티오카바메이트류에 254nm의 UV을 조사할 경우 4종의 시료는 모두 광반응이 일어나 형광을 통해 분리된 티오카바메이트류에 254nm의 UV을 조사할 경우 4종의 시료는 모두 광반응이 일어나 형광을 나타내거나, 전기화학 검출기에 큰 검출 응답을 나타내었다. UV 검출법의 경우 광반응 생성물은 광반응전보다 검출감도는 감소하였으나 장파장쪽에서 검출이 용이하였다. 형광 검출법의 경우 광반응전 4종의 티오카바메이트는 전혀 검출되지 않았으나, 광반응 후 MPTC,CPTC는 Ph 4.0, 50% 아세토니트릴 이동상 조건에서 5.0~9.3ng의 검출한계를 나타내었다. 전기화학 검출법에서는 광반응전 시료가 매우 작은 검출 응답을 보였고, 광반응 후 시료는 5~20배 이상의 검출감도가 증대되었으며 13.3~0.02ng의 검출한계를 나타내었다. 이때 최적 검출조건은 50% 아세토니트릴 $-0.5{\times}10^{-2}$ M 인산 완충용액, pH 7.0 이었다. 또한 티오카바메이트의 광반응물과 OPA-MERC를 반응 코일내에 유도체를 형성시켜 형광검출기로 검출해냄으로써 광분해물에서 1차 아민이 생성됨을 알 수 있었다.

  • PDF

Fluorescence Micropatterning Based on the Polymeric Photobase Generator Containing Oxime-Urethane Groups by Dansylation

  • Choi, Won San;Kim, Hak Soo;Chae, Kyu Ho
    • Rapid Communication in Photoscience
    • /
    • 제2권1호
    • /
    • pp.24-27
    • /
    • 2013
  • A polymeric photobase generator containing oxime-urethane groups is applied to a fluorescence micropatterning material. Polymer bearing oxime-urethane groups was prepared by copolymerization of methyl methacrylate with methacryloyloxyethyl benzophenoneoxime urethane (MBU). The reaction of amino groups in the irradiated copolymer film with dansyl chloride (Dns-Cl) was monitored by using UV absorption, IR absorption and fluorescence spectroscopy. The fluorescence spectrum of the Dns-Cl-treated irradiated copolymer film shows a strong fluorescence with a fluorescence maximum wavelength at 510 nm. A blue fluorescent micropattern with a line width of $2{\sim}3{\mu}m$ was obtained. Treatment of the irradiated copolymer film with Dns-Cl and rhodamine B mixture led to the formation of green, red, and orange-colored fluorescence micropatterns. Thus, various colored micropatterns on a single polymer film can be obtained by selective excitation of each dye molecules.

Synthesis and Optical Properties of Novel Chemosensor Based on Rhodamine 6G

  • Kim, Hyungjoo;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제24권4호
    • /
    • pp.233-238
    • /
    • 2012
  • The opto-functional materials have been developed as a promising research topic toward the end uses for optical materials and applications. The attractive area in this part was the design of sensor molecules for detecting harmful environmental factors. These harmful factors impart undesired effects on wide range of chemical and biological phenomenon. In this context, many researchers have studied luminescence chemosensor materials. These sensor molecules showed optical signals such as color or fluorescence change by detecting harmful environmental factors. In this study, the novel fluorescence chemosensor 1 has been designed and synthesized through reaction of rhodamine 6g hydrazide and 2-hydroxy-1-naphthaldehyde. The chemosensor 1 had been analyzed by UV-Vis and fluorescence spectrophotometer. We found that this chemosensor 1 has 'off-on' and dual type sensing properties toward $Cu^{2+}$ and $Mg^{2+}$.

Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion

  • Kim, Hyungjoo;Li, Xiaochuan;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제25권3호
    • /
    • pp.153-158
    • /
    • 2013
  • In this study, pyrene based chemosensor was synthesized by two step reaction. The chemosensor showed that high selectivity toward fluoride in DMSO. The fluorescence intensity was drastically increased by binding between chemosensor and fluoride ion. Absorption and fluorescence spectra were obtained by UV-Vis spectrometer and fluorescence spectrophotometer. The binding ratio between chemosensor and fluoride ion was also investigated by job's plot method and Benesi-Hildebrand plot. The HOMO/LUMO energy levels and electron distribution were calculated and simulated by Material studio 6.0 Package.

Morphology-Controlled Fabrication of ZnS Nanostructures with Enhanced UV Emission

  • 김연호;장두전
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.587-587
    • /
    • 2013
  • ZnS is well-known direct band gap II-VI semiconductor, and it attracts intense interest due to its excellent properties of luminescence which enable ZnS to have promising materials for optical, photonic and electronic devices. Especially, the emission wavelength of ZnS falls in the UV absorption band of most organic compoundsand biomolecules, thus it is envisaged that ZnS based devices may find applications in increasingly important fluorescence sensing. We have developed a facile and effective one-step process for the fabrication of single-crystalline and pure-wurtzite ZnS nanostructures possessing sharp band-edge emission at room-temperature having diverse length-to-width ratios. Each of nanostructures was composed of chemically pure, structurally uniform, single-crystalline, and defect-free ZnS. These features not only suppress trap or surface states emission centered at 420 nm, but also enhance UV band-edge emission centered at 327 nm, which give as-synthesized our ZnS nanostructures possible sharp UV emission at room temperature. The reaction medium consisting of mixed solvents such as hydrazine, ethylenediamine, and water as well as proper reaction time and temperature have played an important role in the crystallinity and optical properties of ZnS nanostructures. As-synthesized our ZnS nanostructures possessing sharp UV emission guarantee high potential for both fundamental research and technological applications.

  • PDF

Rhodamine 6G Based New Fluorophore Chemosensor Toward Hg2+

  • Son, Young-A;Park, June-Min
    • 한국염색가공학회지
    • /
    • 제24권3호
    • /
    • pp.158-164
    • /
    • 2012
  • Rhodamine dyes belong to xanthene family has excellent photostability and photophysical properties. In rhodamine dyes, Rhodamine 6G and its precursors also have xanthene chromophore and it shows high fluorescent quantum yield. Rhodamine 6G derivates are simple to synthesis and its high sensitivity and water solubility are suitable as good chemosensor. In this regard, Rhodamine 6G derivates which have selectivity to specific metal cation can used to detect various heavy metal ions. In this study, rhodamine 6G derivatives were synthesized by reaction of rhodamine 6G hydrazide and glyoxal and 4-phenyl thiosemicarbazide and it showed colorimetric and fluorescence sensing toward $Hg^{2+}$ ion. This novel chemosensor was analyzed and measured on UV-Vis and fluorescence spectrophotometer. HOMO/LUMO values were also calculated by computational calculation.

Picosecond Photoionization Processes of N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) in Water

  • Lee, Min-Yung;Jang, Du-Jeon;Kim, Dong-Ho;Lee, Sun-Sook;Boo, Bong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권1호
    • /
    • pp.17-20
    • /
    • 1992
  • Photoionization processes of TMPD in $H_2O$ and $D_2O$ were studied, by measuring steady-state absorption, emission, fluorescence excitation spectra, and fluorescence lifetimes on picosecond time scale. The steady-state absorption spectra showed that there exists a cation-ion pair (Wurster's Blue) in $H_2O$ and in $D_2O$ in the electronic ground state. Temperature and excitation wavelength dependence were also studied and the results show that the photoionization reaction in water is an activated process and the fluorescence lifetime is independent of the vibrational excess energy in the uv excitation range of 283-310 nm.