DOI QR코드

DOI QR Code

Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion

  • Kim, Hyungjoo (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Li, Xiaochuan (College of Chemistry and Chemical Engineering, Henan Normal University) ;
  • Son, Young-A (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • Received : 2013.08.16
  • Accepted : 2013.09.09
  • Published : 2013.09.27

Abstract

In this study, pyrene based chemosensor was synthesized by two step reaction. The chemosensor showed that high selectivity toward fluoride in DMSO. The fluorescence intensity was drastically increased by binding between chemosensor and fluoride ion. Absorption and fluorescence spectra were obtained by UV-Vis spectrometer and fluorescence spectrophotometer. The binding ratio between chemosensor and fluoride ion was also investigated by job's plot method and Benesi-Hildebrand plot. The HOMO/LUMO energy levels and electron distribution were calculated and simulated by Material studio 6.0 Package.

Keywords

References

  1. M. Formica, V. Fusi, L. Giorgi, and M. Micheloni, New Fluorescent Chemosensor for Metal Ions in Solution, Coord. Chem. Rev., 256(1-2), 170(2012). https://doi.org/10.1016/j.ccr.2011.09.010
  2. S. P. Wu, K. J. Du, and Y. M. Sung, Colorimetric Sensing of Cu(II): Cu(II) Induced Deprotonation of An Amide Responsible for Color Changes, Dalton Trans., 39(18), 4363(2010). https://doi.org/10.1039/b925898a
  3. J. S. Bae, S. Y. Gwon, and S. H. Kim, Anthraquinone-Carbamodithiolate Assembly as Selective Chromogenic Chemosensor for $Fe^{3+}$, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 25(1), 13(2013). https://doi.org/10.5764/TCF.2013.25.1.13
  4. X. Peng, J. Du, J. Wang, Y. Wu, J. Zhao, S. Sun, and T. Xu, A Selective Fluorescent Sensor for Imaging $Cd^{2+}$ in Living Cells, J. Am. Chem. Soc., 129(6), 1500(2007). https://doi.org/10.1021/ja0643319
  5. H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim, S. H. Yan, J. Y. Lee, J. H. Lee, T. Joo, and J. S. Kim, Coumarin-Derived $Cu^{2+}$-Selective Fluorescence Sensor: Synthesis, Mechanisms, and Applications in Living Cells, J. Am. Chem. Soc., 131(5), 2008(2009). https://doi.org/10.1021/ja808611d
  6. H. Kim and Y. Son, Synthesis and Optical Properties of Novel Chemosensor Based on Rhodamine 6G, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 24(4), 233(2012). https://doi.org/10.5764/TCF.2012.24.4.233
  7. X. Chen, Z. Li, and A. Tong, Salicylaldehyde Fluorescein Hydrazone : A Colorimetric Logic Chemosensor for pH and Cu(II), Thetrahedron Lett., 49(32), 4697(2008). https://doi.org/10.1016/j.tetlet.2008.05.137
  8. Z. Dong, Y. Guo, X. Tian, and J. Ma, Quinoline Group Based Fluorescent Sensor for Detecting Zinc Ions in Aqueous Media and Its Logic Gate Behaviour, J. Lumin., 134(2), 635(2013). https://doi.org/10.1016/j.jlumin.2012.07.016
  9. Y. Niko, S. Kawauchi, and G. Konish, Synthesis, Luminescence Properties and Theoretical Insights of N-Alkyl-or N,N-Dialkyl-Pyrene-1-Carboxamide, Tetrahedron Lett., 52(38), 4843(2011). https://doi.org/10.1016/j.tetlet.2011.07.020
  10. T. M. F. Durate and K. Mullen, Pyrene-Based Materials for Organic Electronics, Chem. Rev., 111(11), 7260(2011). https://doi.org/10.1021/cr100428a
  11. L. Zang, D. Wei, S. Wang, and S. Jiang, A Phenolic Schiff Base for Highly Selective Sensing of Fluoride and Cyanide Via Different Channels, Tetrahedron, 68, 636(2012). https://doi.org/10.1016/j.tet.2011.10.105
  12. G. Weber and F. W. J. Teale, Determination of The Absolute Quantum Yield of Fluorescent Solutions, Trans. Faraday Soc., 53, 646(1957). https://doi.org/10.1039/tf9575300646
  13. P. MacCarthy, Simplified Experimental Route for Obtaining Job's Curves, Anal. Chem., 50(14), 2165 (1978). https://doi.org/10.1021/ac50036a059
  14. F. S. Raad, A. O. E. Ballouli, R. M. Moustafa, M. H. A. Sayah, and B. R. Kaafarani, Novel Quinocalinophenathrophenazine-Based Molecules as Sensors for Anions: Synthesis and Binding Investigations, Tetrahedron, 66(16), 2944(2010). https://doi.org/10.1016/j.tet.2010.02.075
  15. H. A. Benesi and J. H. Hildebrand, A Spectro-ophotometric Investigation of The Binding of Iodine With Aromatic Hydrocarbons, J. Am. Chem. Soc., 71(8), 2703(1949). https://doi.org/10.1021/ja01176a030
  16. S. P. Wu, T. H. Wang, and S. R. Liu, A Highly Selective Turn-On Fluorescent Chemosensor For Copper(II) Ion, Tetrahedron, 66(51), 9655(2010). https://doi.org/10.1016/j.tet.2010.10.054
  17. P. A. Gale, Anion and Ion-Pair Receptor Chemistry, Highlights From 2000 and 2001, Coord. Chem. Rev., 240(1-2), 191(2003). https://doi.org/10.1016/S0010-8545(02)00258-8
  18. M. Biocchi, L. D. Boca, D. E. Gomez, L. Fabbrizzi, M. Licchelli, and E. Mozani, Nature of Urea-Fluoride Binding: Incipient and Definitive Proton Transfer, J. Am. Chem. Soc., 126(50), 16507(2004). https://doi.org/10.1021/ja045936c
  19. S. M. S. Chauhan, T. Bisht, and B. Garg, Anion Sensing by Phenazine-Based Urea/Thiourea Receptors, Tetrahedron Lett., 49(47), 6646(2008). https://doi.org/10.1016/j.tetlet.2008.09.033
  20. S. Devaraj, D. Saravanakumar, and M. Kandaswamy, Dual Responsive Chemosensors for Anion and Cation: Synthesis and Studies of Selective Chemosensor for $F^-$ and Cu(II) Ions, Sens. Act. B: Chem., 136(1-2), 13(2009). https://doi.org/10.1016/j.snb.2008.11.018
  21. D. H. Lee, H. Y. Lee, and J. I. Hong, Anion Sensor Based on The Indoaniline-Thiourea System, Tetrahedron Lett., 43(40), 7273(2002). https://doi.org/10.1016/S0040-4039(02)01455-7

Cited by

  1. Selective Metal Ion Sensing of Bipyridine-Bisterpyridine containing Fluorescent Dyes vol.25, pp.4, 2013, https://doi.org/10.5764/TCF.2013.25.4.254
  2. Synthesis and Property of Pyrene-Naphthalene Diimide-Pyrene Triad vol.26, pp.4, 2014, https://doi.org/10.5764/TCF.2014.26.4.305