• Title/Summary/Keyword: UV/ozone oxidation

Search Result 66, Processing Time 0.019 seconds

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.191-214
    • /
    • 2020
  • The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.

A study on improvement of ozone process by Granular Activated Carbon (입상 활성탄을 이용한 오존공정의 개선에 관한 연구)

  • Lee, Yu-Mi;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.23-26
    • /
    • 2008
  • Ozone/GAC and ozone-GAC processes were introduced for treatment of humic acid, which is representative refractory organic compound. The treatment efficiencies of humic acid in each process were analyzed in pH variation, DOC removal, and $UV_{254}$ decrease. $UV_{254}$ decrease in all processes was comparatively high with efficiency over 92%. $UV_{254}$ decrease in ozone alone process was 85%. DOC removal in Ozone-GAC process was the highest with 75%. Removal by Ozone/GAC, Ozone alone processes were 71% and 33% respectively.

  • PDF

UV-OXIDATIVE TREATMENT OF BIO-REFRACTORY ORGANIC HALOGENS IN LEACHATE: Comparison Between UV/O3, UV/H2O2, and UV/H2O2/O3 Processes

  • Qureshi, Tahir Imran;Kim, Young-Ju
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.84-90
    • /
    • 2006
  • UV-catalytic oxidation technique was applied for the treatment of bio-refractory character of the leachate, which is generally present in the form of adsorbable organic halogens (AOX). Destruction of AOX was likely to be governed by pH adjustment, quantitative measurement of oxidants, and the selection of oxidation model type. Peroxide induced degradation ($UV/H_2O_2$) facilitated the chemical oxidation of organic halides in acidic medium, however, the system showed least AOX removal efficiency than the other two systems. Increased dosage of hydrogen peroxide (from 0.5 time to 1.0 time concentration) even did not contribute to a significant increase in the removal rate of AOX. In ozone induced degradation system ($UV/O_3$), alkaline medium (pH 10) favored the removal of AOX and the removal rate was found 11% higher than the rate at pH 3. Since efficiency of the $UV/O_3$ increases with the increase of pH, therefore, more OH-radicals were available for the destruction of organic halides. UV-light with the combination of both ozone and hydrogen peroxide ($UV/H_2O_2$ 0.5 time/$O_3$ 25 mg/min) showed the highest removal rate of AOX and the removal efficiency was found 26% higher than the removal efficiency of $UV/O_3$. The system $UV/H2O_2/O_3$ got the economic preference over the other two systems since lower dose of hydrogen peroxide and relatively shorter reaction time were found enough to get the highest AOX removal rate.

Characterization of Diethyl Phthalate(DEP) Removal using Ozone, UV, and Ozone/UV Combined Processes (오존, UV, 오존/UV 혼합 공정을 이용한 Diethyl Phthalate(DEP)의 제거특성 연구)

  • Jung, Yeon-Jung;Oh, Byung-Soo;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • Three candidate processes(ozone alone, UV alone and ozone/UV combined processes) were evaluated for the removal of diethyl phthalate(DEP). Of the candidates, the ozone/UV process showed the highest removal efficiency of DEP. To elucidate a major oxidant for DEP oxidation in the ozone/UV process, the effects of pH and hydroxyl radical($OH^{\circ}$) scavenger were investigated. As a result, it was found that $OH^{\circ}$ plays a important role for DEP elimination. Meanwhile, the direct reaction between ozone and DEP was negligible. Observing the pseudo first-order rate of DEP removal in ozone alone and ozone/UV processes, the different pattern was obtained from two processes. The ozone/UV process was well plotted following the pseudo first-order. but in the ozone alone process the rate was divided into fast and slow phases. DEP degradation characteristics in ozone alone and ozone/UV was also investigated by observing the HPLC spectrum. We detected unknown compounds that were guessed to DEP byproducts and observed the formation and disappearance of the unknown compounds according to reaction time. Observing of high removal of TOC in ozone/UV combined process, it was found that DEP and DEP byproducts are completely oxidized by ozone/UV combined process.

Treatment of TNT Red Water by the Ozone-based Advanced Oxidation Processes (오존을 산화제로 사용한 다양한 고급산화 공정에 의한 TNT Red Water의 처리)

  • Jun, Jun Chul;Kwon, Tae Ouk;Moon, Il Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.298-303
    • /
    • 2007
  • Several combinations of ozone based advanced oxidation processes were tested for the treatment of red water (RW) containing recalcitrant chemical pollutants produced from 2,4,6-trinitrotoluene (TNT) manufacturing process. $O_3$, $UV/O_3$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes were tested for the treatment of RW. The order of organic and color removal efficiency was found to be : $O_3{\leq}UV/O_3$ < $UV/O_3/H_2O_2$ < $UV/O_3/H_2O_2/Fe^{2+}$. The optimum conditions for the removal of organic and color in the $UV/O_3/H_2O_2/Fe^{2+}$ process were 0.053 g/min of ozone flow rate, 10 mM of $H_2O_2$ concentration and 0.1 mM of $FeSO_4$ concentration. Organic and color removal efficiencies were 96 and 100 % respectively in the $UV/O_3/H_2O_2/Fe^{2+}$ process. tert-butyl alcohol (t-buOH) was used as the hydroxyl radical scavenger. Enhancement of hydroxyl radical production was achieved by the combination of ozone with several oxidants such as UV, $H_2O_2$, $Fe^{2+}$.

Effect of Ozone and UV Treatment of Groundwater on the Quality of Wine (지하수의 오존과 UV처리가 탁주의 품질특성에 미치는 영향)

  • Park, Young-Gyu;Kim, Hee-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.255-261
    • /
    • 2004
  • Experiments using ozone are presented for the water purification and wine quality improvement. Advanced oxidation process results reveal water treatment by both ozone and UV radiation increases quality of the takju prepared using a Korean conventional nuruk than with ozone-treatment or convectional method only. Water quality was enhanced by ozone treatment, resulting in 85% reduction of hardness, and 30% increase in total glucose produced due to increased conductivity and biodegradability of water. Although initially decreased slightly due to oxidation of takju, higher than expected ethanol production was observed, with ozone plus UV treatment resulting in 20% higher production compared with other methods.

Improvement of Ozone Process for Removal Rate Elevation of Humic Acid (부식산 제거율 향상을 위한 오존공정의 개선에 관한 연구)

  • Lee, Yu-Mi;Son, Yil-Ho;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.25-29
    • /
    • 2007
  • Ozone alone, Ozone/GAC, Ozone/$H_2O_2$ and Ozone/GAC/$H_2O_2$ processes were introduced for treatment of humic acid, which is a representative refractory organic compound. $H_2O_2$ and GAC used as catalysts for experiment. The treatment efficiencies of humic acid in each process were analyzed for pH variation, DOC removal, and $UV_{254}$ decrease. $UV_{254}$ decrease in Ozone/GAC and Ozone/GAC/$H_2O_2$ processes were the highest with about 93%, and Ozone alone and Ozone/$H_2O_2$ processes were 88%. DOC removal in Ozone/GAC/$H_2O_2$ process was the highest with 71%. Removal by Ozone/GAC, Ozone alone, and Ozone/$H_2O_2$ processes were 66%, 39%, and 47%, respectively.

  • PDF

A Comparative Study of Catalytic Ozone processes for Removal of Refractory Organics (난분해성 유기물질 제거를 위한 오존/촉매 공정의 비교에 관한 연구)

  • Lee, Gyu-Hwan;Lee, Yu-Mi;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.199-205
    • /
    • 2006
  • Ozone alone and catalytic ozone processes were introduced for treatment of humic acid, which is representative refractory organic compound. The treatment efficiencies of humic acid in each process were analyzed in pH variation, DOC removal, and $UV_{254}$ decrease. Mn loaded GAC catalyst was prepared by loading potassium permanganate onto the granular activated carbon surface. BCM-GAC and BCM-Silica gel catalyst were prepared by BCM. $UV_{254}$ decrease in all processes was comparatively high with efficiency over 87%. DOC removal in ozone/GAC process was the highest with 78%, and removal rates for other processes followed the order ozone/BCM-GAC(62%) > ozone/BCM-silica gel(45%) > ozone/silica gel(43%) > ozone/Mn Loaded GAC(42%) > ozone alone(37%).

  • PDF

The Influence of Surface Modification of Gold Nanoparticles Supported on TiO2 in the Catalytic Activity of CO Oxidation

  • Park, Da-Hee;Reddy, A.S.;Eah, Sang-Kee;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.213-213
    • /
    • 2011
  • Gold catalysts supported on TiO2 have shown a unique catalytic behavior on CO oxidation, depending on surface effects. Particle size has an influence on the surface activity. To make monodisperse Au nanoparticles, organic capping ligands, such as alkylthiols, were used by a "greener" synthesis method [1,2] and Au nanoparticles were deposited on TiO2. However, organic capping ligands must be removed for high catalytic activities by the Au nanoparticles without changing the Au size [3]. We used UV ozone treatment to decompose thiol ligands. The samples have been characterized by X-ray photoelectron spectroscopy to examine the surface modification by UV ozone treatment. We show the size distribution of the gold nanoparticles by light scattering analysis and transmission electron microscopy. Au/TiO2 have been prepared using the wetness impregnation method. The catalytic performance of CO oxidation over Au supported on TiO2 under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) were tested. The results show that the catalytic activity depends on particle size and the time of UV ozone exposure, which suggests the role of sulfur bonding in determining the catalytic activity of Au/TiO2 catalysts.

  • PDF

Color and COD Removal of Rhodamine B Using Ozone, Photocatalyst and Ozone-Complex Process (오존, 광촉매 및 오존-복합 공정을 이용한 Rhodamine B의 색도와 COD 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.662-669
    • /
    • 2007
  • The effect of advanced oxidation processes such as $O_3$, $UV/TiO_2$, $O_3/UV$ and $O_3/UV/TiO_2$ on decolorization and COD removal of Rhodamine B(RhB) wastewater were considered. The results showed that the higher the $O_3$ concentration was, the higher the decolorization observed and the optimum $TiO_2$ dosage was 0.4 g/L in $UV/TiO_2$ and $O_3/UV/TiO_2$ process. $O_3/UV$ process showed the higher initial decolorization rate constant and the shorter termination time for decolorization than those of the $O_3$ process. The decolorization rate constants in various systems followed the order of $O_3/UV/TiO_2>O_3/UV>O_3{\gg}UV/TiO_2$. The decolorization rate of the RhB solution in every processes was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. The COD removal rate constants in four systems followed the order of $O_3/UV/TiO_2>O_3/UV>UV/TiO_2{\geqq}O_3$. Among four processes, combined photocatalysis and ozonation$(O_3/UV/TiO_2)$ was the most prospective process for removing color and COD such as dye wastewater.