• Title/Summary/Keyword: UV(Ultra violet)

Search Result 199, Processing Time 0.033 seconds

Isolation of Lipid High-yielding Chlorella vulgaris Mutants by UV Irradiation (자외선 조사에 의한 지질 고생산성 Chlorella vulgaris 변이주 분리)

  • Jeong, Haeng Soon;Choi, Min Kyung;Choi, Tae-O;Lee, Jae-Hwa
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • Chlorella vulgaris, a genus of single-cell green algae, is considered to be a very essential resource for the higher value-added business including functional food and biodiesel, due to its high contents of protein, carbohydrate and lipid. In this study, ultraviolet rays were irradiated in order to induce the mutation of C. vulgaris. After inducing the mutation, UV1-20 mutant, high in lipid was selected and its cell growth rate, dry weight, pigment content and lipid content were measured. The growth rate of the UV1-20 mutant was increased almost 1.5 times than the wild type, but pigment contents of chlorophyll and carotinoid were decreased. In addition, the lipid content of UV1-20 was increased 1.8 times than the wild type. Therefore, C. vulgaris mutant, isolated in this study, is considered to have sufficient potential to be used as a material for the higher value-added business.

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.138-144
    • /
    • 2016
  • The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.

Surface Characteristics and Tracking Resistance of Epoxy Insulating Materials against Ultraviolet (자외선 열화에 의한 에폭시 절연재료의 표면특성과 내트래킹성)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.495-496
    • /
    • 2008
  • This paper describes the influence of Ultra-violet irradiation on time to tracking resistance of epoxy insulating materials by use of the inclined plane test. And, the influence of surface degradation was evaluated through several method such as measurement of contact angle, surface roughness, using a scanning electron microscopy. As the 1000 hours of the surface degradation with UV-CON, the flashover time decreases at different rates depending on epoxy resin and silicone rubber specimen. As the duration of the surface degradation with UV-CON is prolonged, the contact angle of epoxy resin decreases at the rate of degradation time, while that of silicone rubber was not exchanged. It is assumed that this phenomenon is related to the decrease in hydrophobicity of the surface of the materials. Also, as to epoxy resin, the decrease of hydrophobicity due to surface degradation with UV-CON is greater than that resulting from surface degradation with WOM. The UV radiation produced chalking and crazing on the surface of the insulating materials specimen.

  • PDF

Antibacterial Effect of $TiO_2$ Photocatalytic Reactor against Food-borne Pathogens

  • Kim, Byung-Hoon;Cho, Dong-Lyun;Ohk, Seung-Ho;Ko, Yeong-Mu
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1345-1348
    • /
    • 2008
  • Titanium dioxide ($TiO_2$) shows antibacterial effects when exposed to near ultra violet (UV) light. In this study, $TiO_2$ photocatalytic continuous reactor was designed and applied to food-borne pathogens such as Vibrio parahaemolyticus ATCC 17802, Salmonella choleraesuis ATCC 14028, and Listeria monocytogenes ATCC 15313. $TiO_2$ films were prepared by conventional sol-gel dip-coating method using titanium tetra iso-propoxide (TTIP). The antibacterial activity of photocatalytic reactor with various flow rates and UV-A illumination time showed effective bactericidal activity. As the UV-A illumination time increased, survival rates of those bacteria decreased. After 60 min of UV-A illumination, the survival rates of V. parahaemolyticus and S. choleraesuis were less than 0.1%. However, that of L. monocytogenes was about 5% at that time point. These results present an effective way to exclude pathogenic bacteria from aqueous foods.

Changes in Growth and Antioxidant Phenolic Contents of Kale according to CO2 Concentration before UV-A Light Treatment (UV-A 조사 전 CO2 농도에 따른 케일의 생육과 항산화적 페놀릭 함량 변화)

  • Jin-Hui Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.342-352
    • /
    • 2023
  • Ultra-violet (UV) light is one of abiotic stress factors and causes oxidative stress in plants, but a suitable level of UV radiation can be used to enhance the phytochemical content of plants. The accumulation of antioxidant phenolic compounds in UV-exposed plants may vary depending on the conditions of plant (species, cultivar, age, etc.) and UV (wavelength, energy, irradiation period, etc.). To date, however, little research has been conducted on how leaf thickness affects the pattern of phytochemical accumulation. In this study, we conducted an experiment to find out how the antioxidant phenolic content of kale (Brassica oleracea var. acephala) leaves with different thicknesses react to UV-A light. Kale seedlings were grown in a controlled growth chamber for four weeks under the following conditions: 20℃ temperature, 60% relative humidity, 12-hour photoperiod, light source (fluorescent lamp), and photosynthetic photon flux density of 121±10 µmol m-2 s-1. The kale plants were then transferred to two chambers with different CO2 concentrations (382±3.2 and 1,027±11.7 µmol mol-1), and grown for 10 days. After then, each group of kale plants were subjected to UV-A LED (275+285 nm at peak wavelength) light of 25.4 W m-2 for 5 days. As a result, when kale plants with thickened leaves from treatment with high CO2 were exposed to UV-A, they had lower UV sensitivity than thinner leaves. The Fv/Fm (maximum quantum yield on photosystem II) in the leaves of kale exposed to UV-A in a low-concentration CO2 environment decreased abruptly and significantly immediately after UV treatment, but not in kale leaves exposed to UV-A in a high-concentration CO2 environment. The accumulation pattern of total phenolic content, antioxidant capacity and individual phenolic compounds varied according to leaf thickness. In conclusion, this experiment suggests that the UV intensity should vary based on the leaf thickness (age etc.) during UV treatment for phytochemical enhancement.

Characteristics of Polycarbonate Film by Ion Beam for UV Block (이온빔을 이용한 폴리카보네이트 필름의 자외선 차단 특성)

  • Choi, Byoung-Hoon;Kim, Young-Jun
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.588-592
    • /
    • 2005
  • For the purpose of obtaining polycarbonate film which blocks ultra-violet ion beam was irradiated onto the surface of PC film. This method has gotten several advantages compared with the techniques, such as the protection of changes in film thickness and UV blocking material deposited onto a base film. In order to investigate UV blocking PC film, the optical and chemical characteristics, surface morphology and lightfastness were confirmed by UV/Vis, FTIR(ATR) spectroscopy, AFM, and Q-UV fasoess analyses. As a result, it was shown that the modified PC film was able to block almost all of UV region and easily control the degree of UV block. The optical changes in the film were attributed to chemical changes in PC surface by ion beam irradiation. Moreover, we expect that the modified PC film can durably block UV due to no changes in colour and UV transmittance after UV fastness test.

The Effects of Balneotherapy in Alkaline Reduced Spring Water on Skin Injury Induced by UV Irradiation in Hairless Mice (자외선으로 손상된 무모생쥐의 피부에 알칼리환원온천수의 침수치료효과)

  • Yoon, Yang-Suk;Kim, Dong-Heui;Jin, Dan;Park, Mi-Soon;Chang, Byung-Soo;Lee, Jee-Yeon;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.21-29
    • /
    • 2011
  • Balneotherapy has been widely used for the treatment of skin diseases in the world. The purpose of this study was to determine the bath effect of the alkaline reduced spring water with the properties of high pH and low oxidation reduction potential (ORP) on the skin injury induced by ultra violet (UV) irradiation. For this purpose, hairless mice were irradiated with UV-B to cause skin injury, and individually taken a bath in spring water (experimental group) and tap water (control group) once a day for 40 min during 21 days. We observed histological changes of the back skin through macro- and microscopic methods compared to the control group. We found that skin injury of the experimental group was more quickly recovered than that of the control group. Under the light microscope, the experimental group showed that epidermal thickening (p<0.01) and the mast cell activation (p<0.001) were lower compared with the control group, in addition infiltration of inflammatory cells and degranulation of mast cells were less observed. These results suggest that regular bath in the spring water with the properties of high pH and low ORP has a positive effect on the skin injury induced by UV irradiation.

Polymer-based Large Core Optical Splitter for Multimode Optical Networks (멀티모드 광네트워크용 폴리머기반 대구경 광분배기)

  • An, Jong Bae;Lee, Woo-Jin;Hwang, Sung Hwan;Kim, Gye Won;Kim, Myoung Jin;Jung, Eun Joo;Moon, Jong Ha;Kim, Jin Hyeok;Rho, Byung Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.4
    • /
    • pp.184-188
    • /
    • 2013
  • Two types of polymer-based optical splitters with $200{\mu}m$ large core are presented for optical multimode networks, such as smart home networks, intelligent automotive networks, etc. Optical splitters that have 1:1 symmetric and 9:1 asymmetric structure were fabricated by a ultra violet(UV)-imprint technology using a deep etched Si(silicon) master by the Bosch process. In this paper, we successfully fabricated the symmetric and asymmetric optical splitters with suitable optical network applications.

Design and Fabrication of Aspherical Optical System for Augmented Reality Application (증강 현실 응용을 위한 비구면 광학계 설계 및 제작)

  • Chang-Won Shin;Hyeong-Chang Ham;Ae-Jin Park;Hee-Jae Jung;Kang-Hwi Lee;Chi-Won Choi
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.4
    • /
    • pp.157-169
    • /
    • 2023
  • Augmented reality (AR) using a head mounted display (HMD) is used in various fields such as military, medicine, manufacturing, gaming, and education. In this paper, we discuss the design and fabrication of the AR optical system, which is most essential for HMD. The AR optical system for HMD requires a wide transparent area in which the augmented image of the display and the real world can be viewed at the same time. To this end, an AR optical system was designed and manufactured by dividing it into three parts according to each characteristic. Also, the refractive index of the ultra-violet (UV) adhesive layer required to make the three optical systems into one complete AR optical system was considered from the design stage to minimize the optical path shift phenomenon when the input light source passes through the UV adhesive layer. In addition, when designing the AR optical system, two aspheric surfaces were used to compensate for off-axis aberration and to be suitable for mass production. Finally, for HMD mass production, an aspheric AR optical system with a thickness of 11 mm, a diagonal field of view of 40°, and a weight of 11.3 g was designed and manufactured.

Investigation on the $8{\times}8$ ReadOut IC for Ultra Violet Detector (UV 검출기 제작을 위한 $8{\times}8$ ReadOut IC에 관한 연구)

  • Kim, Joo-Yeon;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.3
    • /
    • pp.45-50
    • /
    • 2005
  • A UV camera is being used in various application regions such as industry, medical science, military, and environment monitoring. A ROIC(ReadOut IC) is developed and can read the responses from UV photodiode sensors which are made with III-V nitride semiconductors of GaN series haying high resolution and high efficiency. To design FPA(Focal Plane Array) UV $8{\times}8$ ROIC, the photodiode type sensor devices are modeled as the capacitor type ones. The ROIC reads out signals from the detector at)d outputs sequentially pixel signals after amplifying and noise filtering of them. The ROIC is fabricated using the $0.5{\mu}m$ 2Poly 3Metal N-well CMOS process. And then, it and photodiode array are hybrid bonded by gold stud bumping process using ACP(Anisotropic Conductive Paste). After the packaging, UV images appearing on PC verified the operations of the ROIC.