• 제목/요약/키워드: UTP

검색결과 236건 처리시간 0.023초

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • 제60권6호
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.

양격산화탕(凉膈散火湯)이 뇌해마 조직배양의 허혈손상에 따른 신경세포손상에 미치는 영향 (Effect of Yanggyuksanhwa-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture)

  • 이환성;박성준;정광식;손영주;정혁상;박동일;손낙원
    • 대한한방내과학회지
    • /
    • 제29권1호
    • /
    • pp.231-242
    • /
    • 2008
  • Objectives : We can find out the experimental reports of Yanggyuksanhwa-tang, which has the function of regulating blood pressure related with cerebral disease, and increasing local cerebral blood stream volume, also has the recoveries for the damage of vessel endothelium, and endothelium hypertrophy caused by angiospasm after subarachnoid hemorrhage, and reduces the contraction of smooth muscle, so simultaneously improves necrosis. The aim of this study is to investigate effect of Yanggyuksanhwa-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. Methods : We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation, and Yanggyuksanhwa-tang extract was added to cultures. Thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Results : Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. Conclusions : Within pertinent density level, Yanggyuksanhwa-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

  • PDF

생약혼합물이 사이토카인에 의한 갑상선세포의 Apoptosis에 미치는 영향 (Effect of Medicinal Plants on Cytokine-induced Apoptosis in Thyroid Cells)

  • 남경수;손옥례;김미경;박인경;김철호;조현국;전병훈;손윤희
    • 생약학회지
    • /
    • 제36권2호통권141호
    • /
    • pp.88-92
    • /
    • 2005
  • Apoptosis plays an important role in autoimmune chronic (Hashimoto's) thyroiditis, a disorder that often results in hypothyroidism. The goal of this study was to induce apoptosis by the combination of inflammatory cytokines, interferon $(IFN)-{\gamma}$ and tumor necrosis factor $(TNF)-{\alpha}$, and to investigate a potential role of medicinal plants in the thyroid follicular cells (FRTL) in vitro. The apoptosis was evaluated by cellular viability, DNA fragmentation, and terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling (TUNEL) assay. Extract of Gamgung-tang (GGT, Glycyrrhizae Radix, black beans, Angelicae Radix, and Cnidii Rhizoma) $(0.3{\sim}9.0mg/ml)$ was shown to maintain the viability of cells treated with $IFN-{\gamma}(100U/ml)$ and $TNF-{\alpha}$ (0.5 ng/ml). FRTL cells were found to undergo DNA fragmentation with the inflammatory cytokines. The extract of GGT inhibited DNA fragmentation in dose-dependent manner. The cells with TUNEL-positive nuclei were detected with $IFN-{\gamma}$ and $TNF-{\alpha}$ treatment. The number of TUNEL-positive cells decreased with the treatment of extract of GGT. These results indicate that medicinal plants inhibit the occurrence of apoptosis in thyroid follicular cells, therefore, may have therapeutic potential in the treatment of autoimmune chronic thyroiditis.

왕머루 포도에서 분리한 Vitisin A의 자궁암주에 대한 자멸사 효과 (Apoptotic Effect of Vitisin A from Vitis Amurensis against MES-SA Uterine Cancer Cells)

  • 임정한;이효정;이은옥;이효정;권희영;심범상;안규석;김성훈
    • 동의생리병리학회지
    • /
    • 제22권2호
    • /
    • pp.290-295
    • /
    • 2008
  • The cytotoxic characteristics of Vitsin A isolated from Vitis amurensis L. were examined in human colorectal, breast, uterine and renal cancer cells. Vitsin A showed good cytotoxicity against various cancer cells with $IC_{50}$ of $1\;{\sim}\;30\;{\mu}M$. Among them, Vitisin A exhibited strongest cytotoxic effect against MES-SA cells with $IC_{50}$ of 1.11 ${\mu}M$ by SRB assay. To verify whether the cytotoxicity of Vitisin A may be associated with apoptosis, TdT-mediated-dUTP Nick-End Labeling (TUNEL) assay and cell cycle analysis were performed in MES-SA cells. Apoptotic bodies were observed in Vitisin A treated MES-SA cells by TUNEL assay. Also, Vitisin A effectively increased the portion of $sub-G_1$ DNA content by flow cytometric analysis. Taken together, these findings suggest that the cytotoxicity of Vitisin A against MES-SA cells is chiefly mediated by apoptosis.

유기주석화합물 (Tributyltin)이 미성숙 생쥐의 웅성 생식기관들에 미치는 영향에 대한 연구

  • 이경진;이종빈
    • 한국환경생물학회:학술대회논문집
    • /
    • 한국환경생물학회 2002년도 학술대회
    • /
    • pp.33-37
    • /
    • 2002
  • The present was performed to identify the effects of tributyltin (TBT) in the immature mice testes. 3-week-old male ICR mice were orally administrated on one time basis of TBT dose of O (Vehicle control, VC), 25 (TBT 25 mg/kg, T$_{25}$ ), 50 (TBT 50 mg/kg, T$_{50}$ ), 100 (TBT 100 mg/kg, T$_{100}$ ) mg/kg per each one. After 3 days the time treated of TBT, mice were sacrified and wighted body, testis, epididymis, seminal vesicle, vas deferens, and prostate. As the result of weighing, wights of each oragan and gonad index were tendency decresed in comparing groups of TBT treated with that (C) of unteated (p <0.05). As the result of examination of steroid hormones in the immature male mice, The concentrations of serum and intratesticular testosterone were significatly increased rather than the control group. But concentrations of estradiol were decresed objectly. A group of the highest change of concentrations of steroid hormones is T$_{100}$ . The high dose group, T$_{100}$ , was decreased all of concentrations of steroid hormones rather than those of T$^{25}$ . The result of observation with histological changes in testis showed a tendency for innercellular wall to increase damage and extinction in seminiferous tubles. As the result of investigation apoptotic cell numbers in the testis using teminal deoxy-nucleotidyl transferase -mediated dUTP-digoxygenin nick end-labeling immunohistochemical straia, The ratio of Apoptic cells significantly was incensed in depending on treatment of TBT does. In conclusion, these results shows that TBT triggers apoptosis on reproductive cell in testis and changes level of concentrations of steroid hormones in the immature male mice , as endocrine disruptors (EDs).

  • PDF

우슬이 뇌허혈 유발 모래쥐의 해마에서 신경세포 사멸과 단기기억력에 미치는 영향 (The Effects of Achyranthis Radix on Short-term Memory and Apoptosis in the Hippocampus of the Gerbil with Transient Global Ischemia)

  • 윤현석;송윤경;임형호
    • 한방재활의학과학회지
    • /
    • 제21권2호
    • /
    • pp.15-30
    • /
    • 2011
  • Objectives : The present study investigated the effects of Achyranthis Radix on short-term memory, apoptotic neuronal cell death in the hippocampus following transient global ischemia in gerbils. Methods : The gerbils were divided into 5 groups(n=10); Sham operation group, ischemia-induced group, ischemia-induced and 50 mg/kg Achyranthis Radix-treated group, ischemia-induced and 100 mg/kg Achyranthis Radix-treated group, ischemia-induced and 200 mg/kg Achyranthis Radix-treated group. For this study, a step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay, immunohistochemistry for caspase-3 and BrdU(5-Bromo-2'-deoxyuridine), and western blotting for bax, bcl-2 were performed. Results : The results revealed that ischemic injury impaired short-term memory and increased apoototic neuronal cell death in the hippocampal CA1(cornu ammonis area 1) region. Ischemic injury enhanced cell proliferation in the hippocampal CA1 region, the compensatory and adaptive process for excessive apoptosis. Achyranthis Radix treatment improved short-term memory by suppressing ischemia-induced apoptotic neuronal cell death in the hippocampal CA1 region. Also, Achyranthis Radix suppressed the ischemia-induced increase in cell proliferation in the hippocampal CA1 region. Conclusions : We showed that Achyranthis Radix alleviates ischemia-induced apoptotic neuronal cell death, thus facilitates the recovery of short-term memory impairment induced by ischemic cerebral injury.

Dual Inhibition of PI3K/Akt/mTOR Pathway and Role of Autophagy in Non-Small Cell Lung Cancer Cells

  • Jeong, Eun-Hui;Choi, Hyeong-Sim;Lee, Tae-Gul;Kim, Hye-Ryoun;Kim, Cheol-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제72권4호
    • /
    • pp.343-351
    • /
    • 2012
  • Background: The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit this pathway are currently under development for lung cancer treatment. In the present study, we have tested whether dual inhibition of PI3K/Akt/mTOR signaling can lead to enahnced antitumor effects. We have also examined the role of autophagy during this process. Methods: We analyzed the combination effect of the mTOR inhibitor, temsirolimus, and the Akt inhibitor, GSK690693, on the survival of NCI-H460 and A549 non-small cell lung cancer cells. Cell proliferation was determined by MTT assay and apoptosis induction was evaluated by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Autophagy induction was also evaluated by acridine orange staining. Changes of apoptosis or autophagy-related proteins were evaluated by western blot analysis. Results: Combination treatment with temsirolimus and GSK690693 caused synergistically increased cell death in NCI-H460 and A549 cells. This was attributable to increased induction of apoptosis. Caspase 3 activation and poly(ADP-ribose) polymerase cleavage accompanied these findings. Autophagy also increased and inhibition of autophagy resulted in increased cell death, suggesting its cytoprotective role during this process. Conclusion: Taken together, our results suggest that the combination of temsirolimus and GSK690693 could be a novel strategy for lung cancer therapy. Inhibition of autophagy could also be a promising method of enhancing the combination effect of these drugs.

Sperm chromatin and DNA integrity, methyltransferase mRNA levels, and global DNA methylation in oligoasthenoteratozoospermia

  • Rahiminia, Tahereh;Yazd, Ehsan Farashahi;Fesahat, Farzaneh;Moein, Mohammad Reza;Mirjalili, Ali Mohammad;Talebi, Ali Reza
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제45권1호
    • /
    • pp.17-24
    • /
    • 2018
  • Objective: To investigate sperm chromatin/DNA integrity, global DNA methylation, and DNMT mRNA transcription in men with oligoasthenoteratozoospermia (OAT) compared with normozoospermic men. Methods: Semen samples from 32 OAT patients who comprised the case group and 32 normozoospermic men who comprised the control group were isolated and purified using a standard gradient isolation procedure according to World Health Organization criteria. DNMT1, DNMT3A, and DNMT3B transcripts were then compared between groups using real-time quantitative reverse-transcription polymerase chain reaction. Global DNA methylation in sperm was determined by an enzyme-linked immunosorbent assay. Protamine deficiency and the proportion of apoptotic spermatozoa were evaluated using chromomycin A3 (CMA3), aniline blue (AB), and toluidine blue (TB) staining, as well as the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The p-values < 0.05 were considered to indicate statistical significance. Results: Significantly higher proportions of AB+, TB+, CMA3+, and TUNEL+ spermatozoa, as well as DNMT3A and DNMT3B transcription, were found in the OAT group. Positive correlations were detected between sperm parameters, DNA/chromatin damage, and DNMT3A and DNMT3B transcripts. Global DNA methylation was significantly higher in the OAT patients and had a significant correlation with abnormal results of all sperm chromatin integrity tests, but was not associated with DNMT1, DNMT3A, or DNMT3B expression. Conclusion: Oligoasthenoteratozoospermic men showed abnormal sperm parameters, abnormal chromatin/DNA integrity, and a higher global DNA methylation rate, as well as overexpression of DNMT mRNA.

Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation

  • Iqbal, Hamid;Kim, Si-Kwan;Cha, Kyu-Min;Jeong, Min-Sik;Ghosh, Prachetash;Rhee, Dong-kwon
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.593-602
    • /
    • 2020
  • Background: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. Methods: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. Results: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1β, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. Conclusion: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.

Protective Effect of Red Ginseng and Paeonia radix against Nitric Oxide-Induced Apoptosis in Human Neuroblastoma SK-N-MC cells

  • Park, Young-Hoi;Song, Yunk-Yung;Lim, Hyung-Ho
    • 대한한의학회지
    • /
    • 제28권1호통권69호
    • /
    • pp.198-210
    • /
    • 2007
  • Objectives : Nitric oxide(NO) is a reactive free radical and a messenger molecule in many physiological functions. However, excessive release NO of induces neurotoxicity. We investigated whether a mixture of red ginseng and paeonia radix prossesses a protective effect against sodium nitroprusside(SNP)-induced apoptosis in the human neuroblastoma cell line SK-N-MC. Methods : We performed 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, 4,6-diamidino-2-phenylindole(DAPD) staining, terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick end labeling(TUNEL)assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction(RT-PCR), Western blot analysis, and caspase-3 enzyme activity assay in SK-N-HFC cells. Result : MTT assay showed that SNP treatment significantly reduced the viabilities of cells and that pre-treatment with the red ginseng and paeonia radix mixture alleviated SNP-induced cytotoxicity. The cells treated with SNP exhibited several apoptotic features, while those pre-treated fir 1 h with the mixture of red ginseng and paeonia radix 1 h prior to SNP expose showed reduced apoptotic features. In addition, the cells pre-treated with the red ginseng and paeonia radix mixture for 1 h prior to SNP expose increased bel-2 expressions, decreased Bax expressions, and decreased caspase-3 enzyme activity. Conclusions : These results show that the red ginseng and paeonia radix mixture exerts a protective effect against SNP-induced apoptosis in SK-N-MC cells.

  • PDF