• Title/Summary/Keyword: UT

Search Result 479, Processing Time 0.03 seconds

The Effects of Head Position in Different Sitting Postures on Muscle Activity with/without Forward Head and Rounded Shoulder

  • Nam, Ki-Seok;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.3
    • /
    • pp.140-146
    • /
    • 2014
  • Purpose: Differences in scapular kinematics and muscle activity appear in the forward head and rounded shoulder posture (FHRSP). Thus, the aim of this study was to investigate the following effects according to different postures on scapular kinematics and muscle activity around scapular region in individuals with and without FHRSP during overhead reaching task. Methods: Thirty pain-free subjects with/without FHRSP participated in this study. All subjects were positioned into three positions: habitual head posture (HHP), self-perceived ideal head posture (SIHP) and therapist-perceived neutral head posture (TNHP). Muscle activities of upper trapezius (UT), lower trapezius (LT) and serratus anterior (SA) were measured during overhead reaching task. Results: Muscle activity of trapezius muscle (UT and LT) during HHP was significantly higher than SIHP and TNHP in FHRSP group (p<0.05), but there was no difference between SIHP and TNHP. SA also significantly increased muscle activity in HHP more than SIHP and TNHP in FHRSP group (p<0.05), but there was no significant difference between SIHP and TNHP. In Non-FHRSP group, although there was a tendency of different muscle activities among three postures, it was not statistically significant. Conclusion: This result demonstrates that muscle activity associated with overhead reaching task is increased in HHP which affects the scapular kinematics and SIHP contributes changed scapular kinematics and proper recruitment of muscle activity in FHRSP similarly to TNHP.

Comparative Study of Biomechanical Left and Right Elbow Joint Extension Movements After Wheel Axle Application (윤축을 적용한 좌·우 주관절 신전 동작의 운동역학적 비교 연구)

  • Kim, Sung-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.429-436
    • /
    • 2011
  • In this study, we have experimented with 9 players at the national delegate level. Although there were some differences in the average effects of 3 types of one-two straight movements after the application of wheel axle, there were no statistical differences in the case of surface reacting forces, electromyograms, and impact forces. When the right fist was impacted using the one-two straight movements and the wheel axle was applied with 3 segmentations, high impact forces were obtained for the pronation in the following order-72.01 $m/s^2$ (type 2), 70.93 $m/s^2$ (type 3), and 58.19 $m/s^2$ (type 1). Higher values of the surface reacting force were found for type 1 that did not exhibit pronation in the left foot, whereas in the case of the vertical direction of the right foot, type 2 with pronation exhibited higher values and impact forces. In the right electromyogram, high impact forces due to the activation of the muscular electric potential were obtained for lumbar erector (LE) spinae and triceps brachii (TB) with type 1; LE spina, latissimus dosi (LD), and upper trapezius (UT) with type 2; and brachioradialis (BR), UT, and rectus abdominal (RA) with type 3. Due to pronation and complex motions of the 3 pronation segmentations, the efficiency was higher for impacts due to one-two straight movements.

Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld (UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구)

  • Lee, Kang-Yong;Kim, Joon-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.531-539
    • /
    • 1996
  • The research for the classification of the artificial defects in welding parts is performed using the pattern recognition technology of ultrasonic signal. The signal pattern recognition package including the user defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection. The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian classifier are compared and discussed. The pattern recognition technique is applied to the classification of artificial defects such as notchs and a hole. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the artificial defects.

  • PDF

Morningside Pi2 Pulsation Observed in Space and on the Ground

  • Ghamry, Essam
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.305-310
    • /
    • 2015
  • In this study, we examined a morningside Pi2 pulsation, with a non-substorm signature, that occurred in very quiet geomagnetic conditions (Kp = 0) at 05:38 UT on December 8, 2012, using data obtained by Van Allen Probes A and B (VAP-A and VAP-B, respectively) and at a ground station. Using 1 sec resolution vector magnetic field data, we measured the X-component of the pulsation from the Abu Simbel ground station (L = 1.07, LT = UT +2 hr, where LT represents local time) in Egypt. At the time of the Pi2 event, Abu Simbel and VAP-A (L = 3.3) were in the morning sector (07:38 LT and 07:59 MLT, respectively, where MLT represents magnetic local time), and VAP-B was in the postmidnight sector (04:18 MLT and L = 5.7). VAP-A and VAP-B observed oscillations in the compressional magnetic field component (Bz), which were in close agreement with the X-component measurements of the Pi2 pulsation that were made at Abu Simbel. The oscillations observed by the satellites and on the ground were in phase. Thus, we concluded that the observed morningside Pi2 pulsation was caused by the cavity resonance mode rather than by ionospheric current systems.

UT Inspection Technique of Cast Stainless Steel Piping Welds Using Low Frequency TRL UT Probe (저주파수 TRL 탐촉자를 이용한 Cast Stainless Steel 배관 용접부 초음파탐상기법)

  • Shin, Keon-Cheol;Chang, Hee-Jun;Jeong, Young-Cheol;Noh, Ik-Jun;Lee, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • Ultrasonic inspection of heavy walled cast austenitic stainless steel(CASS)welds is very difficult due to complex and coarse grained structure of CASS material. The large size of anisotropic grain strongly affects the propagation of ultrasound by severe attenuation, change in velocity, and scattering of ultrasonic energy. therefore, the signal patterns originated from flaws can be difficult to distinguish from scattered signals. To improve detection and sizing capability of ID connected defect for heavy walled CASS piping welds, the low frequency segmented TRL Pulse Echo and Phased Array probe has been developed. The experimental studies have been performed using CASS pipe mock-up block containing artificial reflectors(ID connected EDM notch). The automatic pulse echo and phase array technique is applied the detection and the length sizing of the ID connected artificial reflectors and the results for detection and sizing has been compared respectively. The goal of this study is to assess a newly developed ultrasonic probe to improve the detection ability and the sizing of the crack in coarse-grained CASS components.

  • PDF

A Study on Arterial Characterization using Finger-Toe Index (FTI) (지첨-족지 지수에 의한 동맥 혈관 특성화 연구)

  • Byeon, M.K.;Han, S.W.;Huh, W.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.777-785
    • /
    • 2007
  • In this paper, Finger-Toe Index (FTI) is proposed as an analytic parameter for the characterization of arterial vessel. Different from the currently being employed pulse wave velocity (PWV) information of the volume pulse wave measured from 4 arterial channels, the proposed FTI uses the ratio of the shorter of the two up-stroke time of PPG from fingers ($UT_{finger}$) and that of PPG (Photoplethysmography) from toes ($UT_{toe}$). To verify the usefulness of the proposed method, Finger-Toe Indexes were derived from the volume pulse waves acquired from 50 people under examination aged from 12 to 81 years old, and they were then compared with blood pressure ankle-brachial index (ABI). It was successfully demonstrated that the arterial stiffness can be estimated with respect to age and FTI is more strongly correlated with the pulse transit time than ABI. From the regression analysis, we also found that FTI has significant correlation PWV for a quantitative index of arterial stiffness and provides more accurate information than ABI for the characterization of arterial vessel.

Effect of Steam Curing on Concrete Piles with Silica Fume

  • Yazdani, N.;F. Asce, M. Filsaime;Manzur, T.
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Silica fume is a common addition to high performance concrete mix designs. The use of silica fume in concrete leads to increased water demand. For this reason, Florida Department of Transportation (FDOT) allows only a 72-hour continuous moist cure process for concrete containing silica fume. Accelerated curing has been shown to be effective in producing high-performance characteristics at early ages in silica-fume concrete. However, the heat greatly increases the moisture loss from exposed surfaces, which may cause shrinkage problems. An experimental study was undertaken to determine the feasibility of steam curing of FDOT concrete with silica fume in order to reduce precast turnaround time. Various steam curing durations were utilized with full-scale precast prestressed pile specimens. The concrete compressive strength and shrinkage were determined for various durations of steam curing. Results indicate that steam cured silica fume concrete met all FDOT requirements for the 12, 18 and 24 hours of curing periods. No shrinkage cracking was observed in any samples up to one year age. It was recommended that FDOT allow the 12 hour steam curing for concrete with silica fume.

Evaluation of the Integrity of TIG Welding Using Non-Contact SH-EMAT (비접촉 SH-EMAT을 이용한 TIG용접부 건전성 평가)

  • Park, Tae Sung;Park, Yeong Hwan;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.48-53
    • /
    • 2016
  • An EMAT can be used to reliably detect defects as it serves as a non-contact transducer with the ability to transmit ultrasonic waves into specimens without couplant. Moreover, an EMAT can easily generate desired waves by altering the design of the coil and magnet. This study proposes an SH-EMAT to evaluate the integrity of the TIG welding part. A stainless steel was welded using the TIG welding method. The welding current was varied to create artificial defects. Both the PA-UT and the RT were applied to verify the defect size. The experimental results generated by using the EMAT were compared with those methods. The amplitude was observed to decrease with an increase in the defect size. These results confirmed that the presence of defects can be reliably detected by attenuation of signal amplitude. The results demonstrated that the proposed method is suitable for evaluating the integrity of TIG welding.

Application of Time-Driven Activity-Based Costing(TDABC) for Total Productive Maintenance(TPM) and Cost of Quality(COQ) Processes (TPM과 COQ 프로세스에서 시간동인 ABC시스템의 활용)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.321-335
    • /
    • 2015
  • This study introduces the methods to apply and develop the integrated Cost of Quality (COQ) and Time-Driven Activity-Based Costing (TDABC) model for seeking not only quality improvement but also reduction of overhead cost. Inefficient and uneconomical COQ activities can be identified by using time driver which also maximizes the quality improvement for Prevention-Appraisal- Failure (PAF) quality costs. In contrast, reduction of the indirect cost of unused capacity resource using Quality Cost Capacity Ratio (QCCR) of TDABC minimizes overhead cost for COQ activities. In addition, linkage between Overall Equipment Effective (OEE) and Time Driver develops the integrated system of Total Productive Maintenance (TPM) and TDABC model. Lean OEE maximizes when an Unused Time (UT) of TDABC that are TPM losses and lean wastes reduces whereas the TPM Cost Capacity Ratio (TCCR) of TDABC minimizes indirect cost for non-value added TPM activities. Numerical examples are derived to better understand the proposed COQ/TDABC model and TPM/TDABC model from this paper. From the proposed model, process mapping and time driver of TDABC are known to lessen indirect cost from general ledger of comprehensive income statement with a better quality innovation and improvement of equipment.