• Title/Summary/Keyword: UO$_2$(NO$_3$)$_2$

Search Result 33, Processing Time 0.027 seconds

A Precipitation of Ammonium Uranyl Carbonate from Uranylnitrate Solution (UO$_2$(NO$_3$)$_2$ 용액으로부터 Ammonium Uranyl Carbonate 제조)

  • 김응호;김형수;이규암;유재형;최청송
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.559-568
    • /
    • 1998
  • Studies of preparation condition and characteristics of AUC(ammonium uranyl carbonate) were carried out to optimize AUC process with different reactor sizes and precipitation methos. As results four types of precipitates with different chemical compositions and morphologies were obtained from the reaction of {{{{ {(NH }_{4 }) { }_{2 } {CO }_{3 } }} with {{{{ {UO }_{2 }( {NO }_{3 }) { }_{2 } }} solution. A phase diagram has been made and crystal structure and chemical composition of each phase have been characterized by using SEM X-ray IR and thermal analysis. It was found that ammonium uranyl carbonate {{{{ {(NH }_{4 }) { }_{4 } {UO }_{2 } {(CO }_{3 }) { }_{3 } }} with monoclinic crystal morphology could be syn-thesized when the mole ratio of in {{{{ {(NH }_{4 }) { }_{2 } {CO }_{3 }/ {UO }_{2 } {(NO }_{3 }) { }_{2 } }} in the solution was higher than 5 Also a mechanism and a precipitating condition on rounding of the AUC particle were examined in the course of the AUC pre-cipitation. The rounding of the AUC particle was possible only by external circulation using pump not by internal circulation using agitator.

  • PDF

A Basic Study on Spherical UO2 Kernel Preparation Using the Sol-Gel Method (Sol-Gel법을 이용한 구형 UO2 Kernel 제조에 관한 기초연구)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Cho, Moon-Sung;Na, Sang-Ho;Lee, Young-Woo;Chang, Jong-Wha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.618-623
    • /
    • 2005
  • HTGR (High Temperature Gas-Cooled Reactor) is highlighted to next generation power plant for producing the clean hydrogen gas. In this study, the spherical $UO_2$ kernel via $UO_3$ gel particles was prepared by the sol-gel process. Raw material of slightly Acid Deficient Uranyl Nitrate (ADUN) solution, which has pH = 1.10 and $[NO_3]/[U]$ mole ratio = 1.93, was obtained from dissolution of $U_3O_8$ powder with conc.-$HNO_3$. The surface of these spherical $UO_3$ gel particles, which was prepared from the broth solution, consisted of 1 M-uranium, 1 M-HMTA, and urea, were covered with the fine crystallite aggregates, and these particles were so hard that crushed well. But the other $UO_3$ gel particles prepared with the broth solution, consisted of 2 M-uranium, 2 M-HMTA, and urea, have soft surface characteristics and an amorphous phase. This type of $UO_3$ gel particles is some chance of doing possibility of high density from the compaction. The amorphous $UO_3$ gel particles was converted to $U_3O_8$ and then $UO_2$ by calcination at $600^{\circ}C\;in\;4\%\;-\;H_2\;+\;N2$ atmosphere.

Effects of Process Parameters on the Powder Characteristics of Uranium Oxide Kernel Prepared by Sol-gel Process (Sol-gel 공정을 이용한 UO2 kernel 제조에서 공정변수가 입자특성에 미치는 영향)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Suhr, Dong-Soo;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.254-261
    • /
    • 2009
  • In this study, we investigated the unit process parameters in spherical $UO_2$ kernel preparation. Nearly perfect spherical $UO_3$ microspheres were obtained from the 0.6M of U-concentration in the broth solution, and the microstructure of the $UO_2$ kernel appeared the good results in the calcining, reducing, and sintering processes. For good sphericity, high density, suitable microstructure, and no-crack final $UO_2$ microspheres, the temperature control range in calcination process was $300{\sim}450^{\circ}C$, and the microstructure, the pore structure, and the density of $UO_2$ kernel could be controlled in this temperature range. Also, the concentration changes of the ageing solution in aging step were not effective factor in the gelation of the liquid droplets, but the temperature change of the ageing solution was very sensitive for the final ADU gel particles.

New Cryptand Complexes of Lanthanides(Ⅲ) and Dioxouranium(Ⅵ) Nitrates

  • Oh-Jin Jung;Chil-Nam Choi;Hak-Jin Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.130-137
    • /
    • 1991
  • The following new cryptand 221 complexes of lanthanides(Ⅲ) and dioxouranium(Ⅵ) nitrate have been synthesized: $(Ln(C_{16}H_{32}N_2O_5)(H_2O)_2(NO_3)_3\ and \((UO_2)_2(C_{16}H_{32}N_2O_5)(H_2O)_4(NO_3)_4$. These complexes have been identified by elemental analysis, moisture titration, conductivity measurements and various spectroscopic techniques. The proton and carbon-13 NMR as well as calorimetric measurements were used to study the interaction of cryptand 221 with La(Ⅲ), Pr(Ⅲ ), Ho(Ⅲ) and $UO_2(Ⅱ)$ ions in nonaqueous solvents. The bands of metal-oxygen atoms, metal-nitrogen atoms and O-U-O in the IR spectra shift upon complexation to lower frequencies, and the vibrational spectra ({\delta}NMN$) of metal-amide complexes in the crystalline state exhibit lattice vibrations below 300 $cm^{-1}$. The NMR spectra of the lanthanides(Ⅲ) and dioxouranium(Ⅵ) nitrate complexes in nonaqueous solvents are quite different, indicating that the ligand exists in different conformation, and also the $^1H$ and $^{13}C-NMR$ studies indicated that the nitrogen atom of the ring has greater affinity to metal ions than does the oxygen atom, and the planalities of the ring are lost by complexation with metal ions. Calorimetric measurements show that cryptand 221 forms more stable complexes with $La^{3+}$ and $Pr^{3+}$ ions than with $UO^{22+}$ ion, and $La^{3+}/Pr^{3+}$ and $UO^{22+}/Pr^{3+}$ selectivity depends on the solvents. These changes on the stabilities are dependent on the basicity of the ligand and the size of the metal ions. The absorption band (230-260 nm) of the complex which arises from the direct interaction of macrocyclic donor atoms with the metal ion is due to n-{\delta}*$ transition and also that (640-675 nm) of $UO^{22+}$-cryptand 221 complex, which arises from interaction between two-dioxouranium(Ⅵ) ions in being out of cavity of the ligand ring is due to d-d* transition.

Focused ion beam-scanning electron microscope examination of high burn-up UO2 in the center of a pellet

  • Noirot, J.;Zacharie-Aubrun, I.;Blay, T.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.259-267
    • /
    • 2018
  • Focused ion beam-scanning electron microscope and electron backscattered diffraction examinations were conducted in the center of a $73\;GWd/t_U\;UO_2$ fuel. They showed the formation of subdomains within the initial grains. The local crystal orientations in these domains were close to that of the original grain. Most of the fission gas bubbles were located on the boundaries. Their shapes were far from spherical and far from lenticular. No interlinked bubble network was found. These observations shed light on previous unexplained observations. They plead for a revision of the classical description of fission gas release mechanisms for the center of high burn-up $UO_2$. Yet, complementary detailed observations are needed to better understand the mechanisms involved.

HTGR Nuclear Fuel Microsphere Preparation Using the Modified Sol-Gel Method (변형 Sol-Gel 방법을 이용한 고온가스로 핵연료 미세구입자 제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.574-582
    • /
    • 2009
  • $UO_2$ microsphere particles, core material of HTGR(High Temperature Gas Reactor) nuclear fuel, were prepared using by the GSP(Gel Supported Precipitation) method which is a modified-method of the wet sol-gel process. The spherical shape of initial liquid ADU droplets from the vibration nozzle system was continuously kept till the conversion to the final $UO_2$ microsphere. But the size of a final $UO_2$ microsphere was shrunken to about 25% of an initial ADU droplet size. Also, we found that the composition of dried-ADU gel particles was constituted of the very complicated phases, coexisted the U=O, C-H, N-H, N-O, and O-H functional groups by FT-IR. The important factors for obtain the no-crack $UO_2$ microsphere during the thermal treatment processes must perfectly wash out the remained-$NH_4NO_3$ within the ADU gel particle in washing process and the selections of an appropriate heating rate at a suitable gas atmosphere, during the calcining of ADU gel particles, the reducing of $UO_3$ particles, and the sintering of $UO_2$ particles, respectively.

Study of Complex Formation of Dioxouranium(VI) Ion with Nitrate Ion by 17O NMR Spectroscopy (산소-17 핵자기공명분광법을 이용한 디옥소우라늄(VI) 이온의 질산 이온과의 착물형성에 관한 연구)

  • Jung, Woo-Sik
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.312-317
    • /
    • 1992
  • The interaction of dioxouranium(VI) (uranyl) ion with nitrate ion has been studied by $^{17}O$ NMR spectroscopy. The $^{17}O$ resonance of uranyl oxygen atoms(uranyl oxygens hereafter) of $UO_2NO_3{^+}$ was at lower field than that of uranyl ion. The stability constants of $UO_2NO_3{^+}$ were obtained from the variation of $^{17}O$ chemical shifts with nitrate-ion concentration at 5, 15, 25, $35^{\circ}C$ and depend on the ionic strength. Thermodynamic parameters calculated from temperature dependence of the stability constants were as follows : ${\Delta}H=-(27.2{\pm}1.7)kJ\;mol^{-1}$ and ${\Delta}S=-(110{\pm}7)JK^{-1}mol^{-1}$. There was a linear relationship between the enthalpy and entropy for 1:1 complex formation of the uranyl ion with a variety of anionic ligands.

  • PDF

TiN Anode for Electrolytic Reduction of UO2 in Pyroprocessing (TiN 양극을 이용한 파이로프로세싱 UO2 전해환원)

  • Kim, Sung-Wook;Choi, Eun-Young;Park, Wooshin;Im, Hun Suk;Hur, Jin-Mok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.229-233
    • /
    • 2015
  • Developing novel anode materials to replace the Pt anode currently used in electrolytic reduction is an important issue on pyroprocessing. In this study, the electrochemical behavior of TiN was investigated as the conductive ceramic anode which evolves O2 gas during the reaction. The feasibility and stability of the TiN anode was examined during the electrolytic reduction of UO2. The TiN anode could electrochemically convert UO2 to metallic U in a LiCl–Li2O molten salt electrolyte. No oxidation of TiN was observed during the reaction; however, the formation of voids in the bulk section appeared to limit the lifetime of the TiN anode.

Synthesis and Characterization of UO2(VI), Th(IV), ZrO(IV) and VO(IV) Complexes with Schiff-Base Octaazamacrocyclic Ligands (Schiff-염기인 옥타아자-거대고리 리간드의 UO2(VI), Th(IV), ZrO(IV) 및 VO(IV) 착물 합성 및 특성)

  • Mohapatra, Ranjan Kumar;Dash, Dhruba Charan
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.395-401
    • /
    • 2010
  • A series of macrocyclic complexes of the type [M(L/L')$(NO_3)_n$].$mH_2O$ and [VO(L/L')($SO_4$)].$2H_2O$, where L/L' is a Schiff base "3,4,10,11-tetraphenyl/tetramethyl-1,2,5,6,8,9,12,13-octaaza cyclotetradeca-2,4,9,11-tetraene-7,14-dithione" derived from thiocarbohydrazide (TCH), benzilmonohydrazone (BMH)/diacetylmonohydrazone (DMH) and carbon disulphide, M = $UO_2$ (VI), Th(IV) and ZrO(IV), n = 2, 4, m = 2, 3, have been synthesized via metal ion template methods. The complexes are characterized on the basis of elemental analysis, thermal analysis, molar conductivity, magnetic moment, electronic, infrared and $^1H$-NMR spectral studies. The ESR and cyclic voltammetry studies of the vanadyl complexes have been carried out. The results indicate that the VO(IV) ion is penta-coordinated yielding paramagnetic complexes; $UO_2$(VI) and ZrO(IV) ions are hexacoordinated where as Th(IV) ion is octa-coordinated yielding diamagnetic complexes of above composition.

Spherical UO3 Gel Preparation Using the External Gelation Method (External Gelation 방법을 이용한 구형 UO3 Gel 입자 제조)

  • Jeong, KyungChai;Kim, YeonKu;Oh, SeungChul;Cho, Moon-Sung;Lee, YoungWoo;Chang, JongWha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.729-736
    • /
    • 2005
  • HTGR (High Temperature Gas-cooled Reactor) is spotlighted to next generation nuclear power plant for producing the clean hydrogen gas and the electricity. In this study, the spherical $UO_3$ gel particles were prepared by the external gelation process, and the characteristics of these particles were analyzed the particle shape, composition of precipitate, and thermal decomposition characteristics with the Streoscope, FT-IR, and X-ray diffractometer. Raw material of the ADUN (Acid Deficient Uranyl Nitrate) solution, which has [$NO_3$]/[U] mole ratio = 1.75, was obtained from dissolution of the $U_{3}O_{8}$ powder with concentrated $HNO_3$, and its concentration is 3.5 M-U/l. The broth solution is prepared with the ADUN, urea, PVA, and THFA solution. The droplets of the broth solution was made through a nozzle system. From this study, we obtained the following results; 1) an externel chemical gelation process is a suitable method in the spherical $UO_3$ particle production, 2) the particle shape are changed by an urea mixing time, THFA volume, and the viscosity of the broth solution, 3) the amorphous $UO_3$ particles obtained from these experiments was converted to $U_{3}O_{8}$ and then $UO_2$ by heat treatment in hydrogen atmosphere at $600^{\circ}C$.