DOI QR코드

DOI QR Code

Focused ion beam-scanning electron microscope examination of high burn-up UO2 in the center of a pellet

  • Noirot, J. (CEA, DEN, DEC, SA3E) ;
  • Zacharie-Aubrun, I. (CEA, DEN, DEC, SA3E) ;
  • Blay, T. (CEA, DEN, DEC, SA3E)
  • Received : 2017.10.20
  • Accepted : 2017.12.13
  • Published : 2018.03.25

Abstract

Focused ion beam-scanning electron microscope and electron backscattered diffraction examinations were conducted in the center of a $73\;GWd/t_U\;UO_2$ fuel. They showed the formation of subdomains within the initial grains. The local crystal orientations in these domains were close to that of the original grain. Most of the fission gas bubbles were located on the boundaries. Their shapes were far from spherical and far from lenticular. No interlinked bubble network was found. These observations shed light on previous unexplained observations. They plead for a revision of the classical description of fission gas release mechanisms for the center of high burn-up $UO_2$. Yet, complementary detailed observations are needed to better understand the mechanisms involved.

Keywords

References

  1. H. Stehle, J. Nucl. Mater. 153 (1988) 3-15. https://doi.org/10.1016/0022-3115(88)90187-0
  2. P. Guedeney, M. Trotabas, M. Boschiero, C. Forat, Standard PWR fuel rod characterization at high burn-up, in: International Topical Meeting on LWR Fuel Performance, 1991. Avignon (France).
  3. N. Itagaki, K. Ohira, K. Tsuda, G. Fischer, T. Ota, Fission gas release and pellet microstructure change of high burnup BWR fuel, in: Technical Committee Meeting on Advances in Fuel Pellet Technology for Improved Performance at High Burnup, Tokyo (Japan), IAEA, Tokyo (Japan), 1996.
  4. M.S. Veshchunov, J. Nucl. Mater. 277 (2000) 67-81. https://doi.org/10.1016/S0022-3115(99)00136-1
  5. M.S. Veshchunov, J. Nucl. Mater. 374 (2008) 44-53. https://doi.org/10.1016/j.jnucmat.2007.06.021
  6. L. Noirot, Nucl. Eng. Des. 241 (2011) 2099-2118. https://doi.org/10.1016/j.nucengdes.2011.03.044
  7. J. Noirot, L. Noirot, L. Desgranges, J. Lamontagne, T. Blay, B. Pasquet, E. Muller, in: Fission Gas Inventory in PWRHigh Burnup Fuel : Experimental Characterization and Modeling, 2004. ANS LWR Fuel Performance, Orlando, Florida (USA).
  8. L. Noirot, J. Nucl. Sci. Technol. 43 (2006) 1149-1160. https://doi.org/10.1080/18811248.2006.9711207
  9. V. Marelle, P. Goldbronn, S. Bernaud, E. Castelier, J. Julien, K. Nkonga, L. Noirot, I. Ramiere, New developments in ALCYONE 2.0 fuel performance code, in: TOPFUEL, Boise, Idaho (USA), 2016.
  10. J. Noirot, I. Zacharie-Aubrun, L. Desgranges, K. Hanifi, J. Lamontagne, B. Pasquet, C. Valot, P. Blanpain, H. Cognon, Nucl. Eng. Technol. 41 (2009) 155-162. https://doi.org/10.5516/NET.2009.41.2.155
  11. J. Noirot, I. Zacharie-Aubrun, K. Hanifi, J. Lamontagne, B. Pasquet, C. Valot, P. Blanpain, H. Cognon, High burnup changes in UO2 fuels irradiated up to 83 GWd/t in $M5^{(R)}$ claddings, in: WRFPM, Seoul (South Korea), 2008.
  12. J. Noirot, C. Gonnier, L. Desgranges, Y. Pontillon, J. Lamontagne, LWR Fuel Gas Characterization at CEA Cadarache LECA-STAR Hot Laboratory, 2009. IAEA-TECDOC-CD-1635.
  13. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, 1976.
  14. J.R. Matthews, M.H. Wood, Eur. Appt. Res. Rept. Nucl. Sci. Technol. 5 (1984).
  15. D. Baron, L. Hallstadius, Fuel performance of light water reactors (Uranium Oxide and MOX), in: Comprehensive Nuclear Materials, Elsevier, 2012.
  16. I. Zacharie, S. Lansiart, P. Combette, M. Trotabas, M. Coster, M. Groos, J. Nucl. Mater. 255 (1998) 92-104. https://doi.org/10.1016/S0022-3115(98)00040-3
  17. S. Valin, A. Mocellin, G. Eminet, S. Ravel, Modelling the behaviour of intergranular fission gas during out-of-pile annealing, in: Fission Gas Behaviour in Water Reactor Fuels, NEA, Ed, OCDE, Cadarache (France), 2000, pp. 357-368.
  18. C. Baker, J.C. Killeen, Fission gas release during post irradiation annealing of UO2, in: Int. Conf. On Materials for Nuclear Reactor Core Applications, BNES Bristol (UK), 1987.
  19. R.J. White, J. Nucl. Mater. 325 (2004) 61-77. https://doi.org/10.1016/j.jnucmat.2003.10.008
  20. P. Cook, E.C. Matthews, M. Barker, R. Foster, A. Donaldson, C. Ott, D. Papaioannou, C.T. Walker, Post-irradiation examination and testing of BNFL SBR MOX fuel, in: Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida (USA), 2004.
  21. M.A. Barker, C.P. Chatwin, S.L. Owens, Experimental and computational analysis of the development of intergranular bubbles in oxide fuels, in: TOP-FUEL, Paris (France), 2009.
  22. J.A. Turnbull, M.O. Tucker, Phil. Mag. 30 (1) (1974) 47-63. https://doi.org/10.1080/14786439808206532
  23. I. Zacharie-Aubrun, T. Blay, C. Ciszak, C. Cagna, S. Chalal, A new look on irradiated fuels at the CEA Cadarache, in: NuMat, Montpellier, (France), 2016.
  24. I. Zacharie-Aubrun, T. Blay, New capabilities of analyses with a versatile nuclearized dual beam, in: Hotlab, Karlsruhe (Germany), 2016.
  25. J. Noirot, T. Blay, J. Lamontagne, L. Fayette, Y. Pontillon, X. Pujol, Size and radial origin of fragments formed while heating a 83 GWd/tU PWR fuel up to $1200^{\circ}C$, in: LOCA Workshop, Fuel Fragmentation, Relocation and Dispersal (FFRD) - Experimental Basis, Mechanisms and Modelling Approaches, Aix-en-Provence (France), 2015.
  26. M. Chollet, G. Kuri, D. Grolimund, M. Martin, J. Bertsch, Synchrotron XRD analysis of irradiated UO2 fuel at various burn-up, in: TopFuel, Boise, Idaho (USA), 2016.
  27. M. Chollet, C. Cozzo, D. Grolimund, M. Martin, J. Bertsch, From fresh to 9-cycle UO2 fuel: microstructure evolution studied by synchrotron X-ray diffraction, in: WRFPM, Jeju (Korea), 2017.
  28. S.T. Murphy, P. Fossati, R.W. Grimes, J. Nucl. Mater. 466 (2015) 634-637. https://doi.org/10.1016/j.jnucmat.2015.09.007
  29. L.V. Brutzel, E. Vincent-Aublant, J. Nucl. Mater. 377 (2008) 522-527. https://doi.org/10.1016/j.jnucmat.2008.04.010

Cited by

  1. Restructuring in high burnup UO2 studied using modern electron microscopy vol.509, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2018.05.077
  2. MOX fuel microstructural evolution during the VERDON-3 and 4 tests vol.531, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2020.152015
  3. Extended defect change in UO2 during in situ TEM annealing vol.196, pp.None, 2020, https://doi.org/10.1016/j.actamat.2020.06.038
  4. Determination of the pressure in micrometric bubbles in irradiated nuclear fuels vol.543, pp.None, 2021, https://doi.org/10.1016/j.jnucmat.2020.152591
  5. Molecular dynamics study of UO 2 symmetric tilt grain boundaries around [001] axis vol.104, pp.6, 2021, https://doi.org/10.1111/jace.17736
  6. Microstructural Analysis of Zirconia at the Fuel-Cladding Interface in Medium and High Burnup Irradiated Fuel Rods vol.96, pp.3, 2018, https://doi.org/10.1007/s11085-021-10045-8