• Title/Summary/Keyword: UNIQUAC equation

Search Result 12, Processing Time 0.026 seconds

The Measurement and Estimation of Minimum Flash Point Behavior for Binary Mixtures Using Tag Open-Cup Tester (Tag 개방식 장치를 이용한 이성분계 혼합물의 최소인화점 현상의 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.50-55
    • /
    • 2008
  • The flash points for the systems, ethlybenzene+n-butanol and ethlybenzene+n-hexanol, were measured by using Tag open-cup tester (ASTM D1310-86). These binary mixtures exhibited MFPB (minimum flash point behavior), which leads to the minimum on the flash point vs composition curve. The experimental data were compared with the values calculated by the Raoult's law, the UNIQUAC equation and the NRTL equation. The calculated values based on the UNIQUAC and NRTL equations were found to be better than those based on the Raoult's law. It was concluded that the UNIQUAC and NRTL equations were more effective than the Raoult' law at describing the activity coefficients for nonideal solution such as the ethlybenzene+n-butanol and ethlybenzene+n-hexanol systems. And the predictive curve of the flash point prediction model based on the NRTL equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the UNIQUAC equation.

  • PDF

The Measurement and Estimation of Lower Flash Points for n-Propanol+Acetic acid and n-Propanol+n-Propionic Systems (n-Propanol+acetic acid 및 n-propanol+n-propionic acid 계의 하부 인하점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.37-42
    • /
    • 2007
  • Flash points for the flammable binary systems, n-propanol+acetic acid and n-propanol+n-propionic acid, were measured by Cleveland open cup tester. The Raoult's law, the van Laar equation and the UNIQUAC equation were used for predicting flash points and were compared with experimentally-derived data. The calculated values based on the van Laar and UNIQUAC equations were found to be better than those based on the Raoult's law. And the predictive curve of the flash point prediction model based on the UNIQUAC equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the the van Laar equation.

The Measurement and Prediction of Minimum Flash Point Behaviour for Flammable Binarry Solution Using Pensky-Martens Closed Cup Tester

  • Ha, Dong-Myeong;Choi, Yong-Chan;Lee, Sung-Jin
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.6-10
    • /
    • 2010
  • The flash point of liquid solution is one of the most important flammability properties that used in hazard and risk assessments. Minimum flash point behaviour (MFPB) is showed when the flash point of a liquid mixture is below the flash points of the individual components. In this paper, the lower flash points for the flammable binary system, n-decane+n-octanol, were measured by Pensky-Martens closed cup tester. This binary mixture exhibited MFPB. The measured flash points were compared with the values calculated by the Raoult's law and the optimization method using van Laar and UNIQUAC equations. The optimization method were found to be better than those based on the Raoult's law, and successfully estimated MFPB. The opimization method based on the van Laar equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the UNIQUAC.

The Measurement of Flash Point for Unflammable-Flammable Binary Mixtures(CCl4+o-Xylene and CCl4+p-Xylene) Using Open Cup Tester (개방식 장치를 이용한 난연성-가연성 이성분계 혼합물(CCl4+o-Xylene and CCl4+p-Xylene)의 인화점 측정)

  • Kim, Chang-Seob;Lee, Sungjin;Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.18-23
    • /
    • 2015
  • The flash point is used to categorize inflammable liquids according to their relative flammability. The flash point is important for the safe handling, storage, and transportation of inflammable liquids. The flash point temperature of two binary liquid mixtures($CCl_4+o-xylene$ and $CCl_4+p-xylene$) has been measured for the entire concentration range using Tag open cup tester. The flash point temperature was estimated using Raoult's law, UNIQUAC model and empirical equation. The experimentally derived flash point was also compared with the predicted flash point. The empirical equation is able to estimate the flash point fairly well for $CCl_4+o-xylene$ and $CCl_4+p-xylene$ mixture.

The Measurement of Lower Flash Points For Binary Mixtures (이성분계 혼합물의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.35-39
    • /
    • 2013
  • The flash point is an important indicator of the flammability of a chemical. In this study, the flash points for the n-propanol+n-butanol and n-propanol+acetic acid systems were measured by Tag open-cup apparatus. The experimental data were compared with the values calculated by the Raoult's law and optimization method based on van Laar and UNIQUAC equations. The calculated values by optimization method were found to be better than those based on the Raoult's law.

Liquid-Liquid Equilibrium and Physical Properties of Aqueous Mixtures of Poly (Ethylene Glycol) 3000 with Tri-Potassium Citrate at Different pH: Experiment, Correlation and Thermodynamic Modeling

  • Ketabi, Mahnam;Pirdashti, Mohsen;Mobalegholeslam, Poorya
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.12-23
    • /
    • 2019
  • The new experimental data of liquid-liquid equilibrium (LLE) of aqueous two-phase system (ATPS) consisting of poly(ethylene glycol) 3000 + tri-potassium citrate at different pH were presented. It was found that an increase in pH resulted in the expansion of the two-phase region. The TLL and STL increased with increasing the pH values. The Merchuk equation can be appropriately employed to correlate the binodal curves and also the tie-line compositions were adjusted to both the Othmer-Tobias and Bancroft equations. In order to calculate the compositions of the phase and the ends of the tie-lines, density and refractive indices as two physical properties were used. Finally, the extended UNIQUAC, UNIFAC, Virial-(Mobalegholeslam & Bakhshi) and modified UNIQUAC-FV were used to measure the phase equilibria at different pH. The results of the models suggested that it can be used quite well to correlate the LLE in an aqueous solution of polymer-salt.

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Benzene System at Subatmospheric Pressures (일정압력하에서 1-propanol/benzene 계의 기-액 상평형)

  • Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.222-228
    • /
    • 2018
  • Benzene is one of the most widely used basic materials in the petrochemical industry. Generally, benzene exists as a mixture with alcohols rather than as a pure substance. Further, the alcohols-added mixtures usually exhibit an azeotropic composition. In this context, knowledge of the phase equilibrium behavior of the mixture is essential for its separation and purification. In this study, the vapor-liquid equilibrium data were measured in favor of a recirculating VLE apparatus under constant pressure for the 1 - propanol / benzene system. The measured vapor - liquid equilibrium data were also correlated by using the UNIQUAC and WILSON models and the thermodynamic consistency test based on the Gibbs/Duhem equation was followed. The results of the phase equilibrium experiment revealed RMSEs (Root Mean Square Error) and AADs (Average Absolute Deviation) of less than 0.05 for both models, indicating a good agreement between the experimental value and the calculated value. The results of the thermodynamic consistency test also confirmed through the residual term within ${\pm}0.2$.

Excess Molar Enthalpies and Excess Molar Volumes for the Binary Mixtures {1,2-dichloropropane+2-(2-methoxyethoxy)ethanol, and +2-(2-ethoxyethoxy)ethanol} at 298.15 K (2성분계 {1,2-dichloropropane+2-(2-methoxyethoxy)ethanol 및 + 2-(2-ethoxyethoxy)ethanol}에 대한 298.15 K에서의 과잉몰엔탈피 및 과잉몰부피)

  • Kim, Jaewon;Kim, Moongab
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.444-452
    • /
    • 2006
  • This paper reports experimental excess molar volumes $V^E_m$ using a digital vibrating-tube densimeter and excess molar enthalpies $H^E_m$ by means of an isothermal microcalorimeter with a flow mixing cell for the binary mixtures{1,2-dichloropropane + 2-(2-methoxyethoxy)ethanol} and {1,2-dichloropropane + 2-(2-ethoxyethoxy)ethanol} at 298.15 K under atmospheric pressure. All the $V^E_m$ and $H^E_m$ of the two binary mixtures showed S-shaped forms, being negative for poor and positive for rich 1,2-dichloropropane mole fractions. These show that the excess properties were shown to be negative deviation from ideality due to the strong self-association effect among 2-(2-alkoxyethoxy)ethanol molecules at an early stage of mixing, a relatively high energy then is needed to break hydrogen bonds of 2-(2-alkoxyethoxy)ethanol with an increase ofhalogenated hydrocarbon molecular at high mole fraction of 1,2-dichloropropane. The values of excess molar properties($V^E_m$ and $H^E_m$) were fitted by the Redlich-Kister equation using Nelder-Mead's simplex pattern search method. The Wilson, NRTL, and UNIQUAC models were used to correlate the $H^E_m$ values.

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Bromochloromethane System at Subatmospheric Pressures (감압하에서 1-propanol과 Bromochloromethane의 정압 기-액 평형)

  • Jang, Hoi-Gu;Kang, Choon-Hyoung
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.295-300
    • /
    • 2010
  • A binary system of 1-propanol and bromochloromethane which exhibits an azeotropic point and a considerable nonideal phase behavior probably due to the large boiling point difference is not amenable in the actual chemical processes such as the distillation tower and absorber. Therefore, experimental data of phase behavior data of this mixture are indispensable in understanding the inherent thermodynamic characteristics for an efficient application of the system in the industrial processes. In this work, the isobaric vapor-liquid equilibrium of a binary mixture consisting of 1-propanol and bromochloromethane was measured by using a recirculating equilibrium cell at various pressures ranging from 30 to 70 kPa. The measured VLE data were correlated in a satisfactory manner by using the UNIQUAC and NRTL models along with the thermodynamic consistency test based on Gibbs/Duhem equation. In addition, the excess molar volume of the mixture was also measured by using a vibrating densitometer and correlated with a Redlich-Kister polynomial.

Phase Equilibrium of Binary Mixture for the (propylene oxide + 1-pentanol) System at Several Temperatures

  • Kim, Jeong-lae;Kim, Hakmin;Park, Su In;An, Gyu Min;Kim, Min Gi;Shin, Moon Sam
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.73-77
    • /
    • 2019
  • Isothermal (vapor + liquid) equilibrium data measurements were undertaken for the binary mixtures of (propylene oxide + 1-pentanol) system at three different temperatures (303.15, 318.15, and 333.15) K. The Peng-Robinson-Stryjek-Vera equation of state (PRSV EOS) was used to correlate the experimental data. The van der Waals one-fluid mixing rule was used for the vapor phase and the Wong-Sandler mixing rule, which incorporates the non-random two liquid (NRTL) model, the universal quasi-chemical (UNIQUAC) model and the Wilson model, was used for the liquid phase. The experimental data were in good agreement with the correlation results.