• Title/Summary/Keyword: UIO-66

Search Result 3, Processing Time 0.012 seconds

Stability of Zirconium Metal Organic Frameworks with 9,10- Dicarboxylic Acid Anthracene as Ligand

  • Xiao, Sheng-Bao;Chen, Sai-Sai;Liu, Jin;Li, Zhen;Zhang, Feng-Jun;Wang, Xian-Biao;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • With high specific surface area and pore structural diversity, MOFs show important applications in gas storage, catalysis, sensing, separation, and biomedicine. However, the stability of the structure of MOFs has restricted their application and development. In this study, zirconium metal organic frameworks with 9,10-dicarboxylic acid anthracene as ligand, named UIO-66 ($H_2DCA$), were synthesized and their properties and structures were characterized by XRD, SEM, and $N_2$ adsorption. We focus on the stability of the structure of UIO-66 ($H_2DCA$) under different conditions (acid, alkali, and water). The structural changes or ruins of UIO-66 ($H_2DCA$) were traced by means of XRD, TG, and FT-IR under different conditions. The results show that the UIO-66 ($H_2DCA$) materials are stable at 583 K, and that this structural stability is greatly influenced by different types of acid and alkali compounds. Importantly, we found that the structures maintain their stability in environments of nitric acid, triethylamine, and boiling water.

Antibody Functionalized UiO-66-(COOH)2 Amplified Surface Plasmon Resonance Analysis Method for fM Oxytocin (펨토몰 농도의 옥시토신 검출을 위한 항체 기능성 UiO-66-(COOH)2 증폭형 표면 플라즈몬 공명 분석법 개발)

  • Myungseob Lee;Ha-Young Nam;Su Yeon Park;Sung Hwa Jhung;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.335-340
    • /
    • 2024
  • In this paper, we synthesized organic and inorganic hybrid materials to introduce antibody functionality to UIO-66 and incorporated them into a surface plasmon resonance (SPR) assay to enhance the sensitivity of detecting small molecules such as oxytocin. A biological marker peptide called oxytocin may help in the diagnosis of heart failure, Alzheimer's disease, and cancer. To detect oxytocin at concentrations as low as a few femtomole (fM), we developed a surface sandwich assay utilizing a pair of oxytocin-specific antibodies for enhancing selectivity and one of metal organic frameworks [e.g., UiO-66-(COOH)2] possessing high porosity and surface-area as a signal amplifier. Initially, real-time SPR assays were used to confirm that each selected oxytocin-specific antibody binds strongly to oxytocin and to different binding sites on oxytocin. One of these antibodies (e.g., anti-OXT[OTI5G4]) was immobilized on the surface of a thin gold chip. Upon sequential injecting of oxytocin and the other antibody (e.g., anti-OXT[4G11]) conjugated to UiO-66-(COOH)2 onto the surface to form the surface sandwich complex of anti-OXT[OTI5G4]/oxytocin/UiO-66-(COOH)2-anti-OXT[4G11]), SPR changes, which varied with oxytocin concentration, were then measured in real time. The results demonstrated that sensitivity was amplified by over a million-fold compared to assays without UiO-66-(COOH)2, enabling oxytocin detection down to approximately 10 fM.

Glutamic Acid-Grafted Metal-Organic Framework: Preparation, Characterization, and Heavy Metal Ion Removal Studies

  • Phani Brahma Somayajulu Rallapalli;Jeong Hyub Ha
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.556-565
    • /
    • 2023
  • Fast industrial and agricultural expansion result in the production of heavy metal ions (HMIs). These are exceedingly hazardous to both humans and the environment, and the necessity to eliminate them from aqueous systems prompts the development of novel materials. In the present study, a UIO-66 (COOH)2 metal-organic framework (MOF) containing free carboxylic acid groups was post-synthetically modified with L-glutamic acid via the solid-solid reaction route. Pristine and glutamic acid-treated MOF materials were characterized in detail using several physicochemical techniques. Single-ion batch adsorption studies of Pb(II) and Hg(II) ions were carried out using pristine as well as amino acid-modified MOFs. We further examined parameters that influence removal efficiency, such as the initial concentration and contact time. The bare MOF had a higher ion adsorption capacity for Pb(II) (261.87 mg/g) than for Hg(II) ions (10.54 mg/g) at an initial concentration of 150 ppm. In contrast, an increased Hg(II) ion adsorption capacity was observed for the glutamic acid-modified MOF (80.6 mg/g) as compared to the bare MOF. The Hg(II) ion adsorption capacity increased by almost 87% after modification with glutamic acid. Fitting results of isotherm and kinetic data models indicated that the adsorption of Pb(II) on both pristine and glutamic acid-modified MOFs was due to surface complexation of Pb(II) ions with available -COOH groups (pyromellitic acid). Adsorption of Hg(II) on the glutamic acid-modified MOF was attributed to chelation, in which glutamic acid grafted onto the surface of the MOF formed chelates with Hg(II) ions.