• Title/Summary/Keyword: UHT-sterilization

Search Result 6, Processing Time 0.018 seconds

Nutritional and Organoleptical Aspects of UHT Treated Milk (UHT처리된 우유의 영양 및 미각적 분석)

  • Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.276-282
    • /
    • 1982
  • The UHT treatment and consequent storage effect on nutritional value of milk are discussed. Compared with the conventional sterilization the UHT treatment of milk represents a relatively small thermal stress. During UHT processing, nutritive value of protein, fat, carbohydrates, fat-soluble vitamins and minerals are generally unaffected. Nutritive value of some water soluble vitamins and protein are adversely affected in a small degree during storage. It has been recommended that UHT milk has best nutritional and organoleptic qualities on storage under refrigeration. Some unsolved future problems are also suggested.

  • PDF

Effects of Heat Treatment on the Nutritional Quality of Milk III. Effect of Heat Treatment on Killing Pathogens in Milk (우유의 열처리가 우유품질과 영양가에 미치는 영향: III. 우유 열처리에 의한 병원균 사멸효과)

  • Moon, Yong-II;Jung, Ji Yun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2017
  • A small amount of milk is sold as 'untreated' or raw in the US; the two most commonly used heat-treatments for milk sold in retail markets are pasteurization (LTLT, low-temperature long time; HTST, high-temperature short time) and sterilization (UHT, ultra-high temperature). These treatments extend the shelf life of milk. The main purpose of heat treatment is to reduce pathogenic and perishable microbial populations, inactivate enzymes, and minimize chemical reactions and physical changes. Milk UHT processing combined with aseptic packaging has been introduced to produce shelf-stable products with less chemical damage than sterile milk in containers. Two basic principles of UHT treatment distinguish this method from in-container sterilization. First, for the same germicidal effect, HTST treatments (as in UHT) use less chemicals than cold-long treatment (as in in-container sterilization). This is because Q10, the relative change in the reaction rate with a temperature change of $10^{\circ}C$, is lower than the chemical change during bacterial killing. Based on Q10 values of 3 and 10, the chemical change at $145^{\circ}C$ for the same germicidal effect is only 2.7% at $115^{\circ}C$. The second principle is that the need to inactivate thermophilic bacterial spores (Bacillus cereus and Clostridium perfringens, etc.) determines the minimum time and temperature, while determining the maximum time and temperature at which undesirable chemical changes such as undesirable flavors, color changes, and vitamin breakdown should be minimized.

Determination of ${\alpha}-lactalbumin$ in Heated Milks by HPLC (HPLC에 의한 열처리된 우유중 ${\alpha}-lactalbumin$의 정량)

  • Kee, Hae-Jin;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.393-395
    • /
    • 1992
  • The ${\alpha}-lactalbumin({\alpha}-la)$ concentration in raw and laboratory-heated milks by HPLC was 1.20 mg/ml (unheated), 1.17 mg/ml ($63^{\circ}C$, 30min), 1.13 mg/ml ($72^{\circ}C$, 15sec) and 0 mg/ml ($100^{\circ}C$, 10min), respectively. Whereas, ${\alpha}-lactalbumin$ concentration ranges of commercial milks were $1.00{\sim}1.02\;mg/ml$ (pasteurized), $0.23{\sim}0.68\;mg/ml$ (UHT-pasteurized) and $0.77{\sim}0.89\;mg/ml$ (UHT-sterilized), respectively. It was supposed that the ${\alpha}-lactalbumin$ content of sterilized milk will be lower than that of UHT milk, but the opposite occurred. This discrepancy would be caused by the different heating system in the milk plants, where indirect UHT-treatment had more heat intensity than direct UHT-processing. The HPLC determination of ${\alpha}-lactalbumin$ may be an indicator to evaluate correctly and rapidly heated milks.

  • PDF

Chemical and Microbiological Quality, Capillary Electrophoresis Pattern, and Rennet Coagulation of UHT-treated and Irradiated Milk

  • Ham, Jun-Sang;Shin, Ji-Hye;Noh, Young-Bae;Jeong, Seok-Geun;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Wan-Kyu;Jo, Cheo-Run
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.58-65
    • /
    • 2008
  • To see the possibility of irradiation as an alternative to ultra high temperature (UHT) sterilization, the quality characteristics of milk were analyzed. Milk treated by UHT ($135^{\circ}C$ for 4 sec) and irradiation at higher than 3 kGy showed no viable counts after 7 days of storage at $4^{\circ}C$. The contents of certain amino acids of milk, such as Arg, Asp, Glu, Ile, Leu, Lys, Pro, Ser, Thr, and Tyr, were lower in irradiated groups at 10 kGy than in UHT-treated one, but no difference was observed between irradiated milks at less than 5 kGy and UHT. The capillary electrophoresis (CE) patterns of the milk irradiated at 10 kGy showed a similar trend to the raw milk, low temperature long time (LTLT, $63^{\circ}C$ for 30 min), and high temperature short time (HTST, $72^{\circ}C$ for 15 sec) treated. However, the CE pattern of UHT-treated milk was different. Rennet coagulation test agreed with the CE results, showing that all milk samples were coagulated by rennet addition except for UHT-treated milk after 1 hr. These results suggest that irradiation of milk reduce the content of individual amino acids but it may not induce severe conformational change at a protein level when compared with UHT treatment.

Changes of Indicative Substances According to Heat Treatment of Milk (우유의 가열처리에 따른 지표물질의 변화)

  • 김경미;홍윤호;이용규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.390-397
    • /
    • 1992
  • This study was carried out to analyze the physicochemical properties of bovine milks, which were heated with LTLT, HTST, UHT pasteurization and UHT sterilization methods and to compare the heat intensity among the heating methods and samples. The mean HMF values per liter milk were measured as 0.66~1.62 $\mu$M (LTLT), 0.9~1.78$\mu$M (HTST), 3.53$\mu$M(UHT pasteurized) and 7.43~8.97$\mu$M (UHT sterilized) in samples, re- sportively. The available Iysine contents per 100ml milk showed 293.2 mg (Raw), 289.2~291.2 mg (LTLT), 298.4~292.4mg (HTST), 272.4~261.6mg (UHT pasteurized) and 279.0mg (UHT sterilized), respectively. The rates of whey protein denaturation were 9.5~11.4% (LTLT), 9.5~17.1% (HTST), 89.3~95% (UHT pas-tsterilized) and 62.7% (UHT sterilized), respectively. The contents of SH groups per g protein were determined as 2.86$\mu$M (Raw) and 2.95~3.15$\mu$M (LTLT), 3.08~3.18$\mu$M (HTST), 3.26~3.42$\mu$M (UHT Pasteurized) and 3. 36$\mu$M (UHT sterilized), respectively, The SS groups Contents per g protein were 28.93$\mu$M (Raw), 25.72~26. 51 $\mu$M (LTLT), 26.93~26.79$\mu$M (HTST), 23.65~23.04 $\mu$M (UHT pasteurized) and 24.69$\mu$M (UHT sterilized), respectively. The ascorbic acid contents per liter milk were measured 6.05mg (Raw), 1.47~1.65mg (LTLT), 2.50~3.85mg (HTST), 2.87~3.69mg (UHT pasteurized) and 4.50mg (UHT sterilized). The changes of some in-dices in milk samples depend on the heating temperature and time ; the HMF values, SH groups, whey protein denaturation rates increased, while the available lysine contents and SS groups decreased in LTLT, HTST, UHT pasteurized and UHT sterilized milks. No remarkable differences were found in heating indicators between LTLT and UHT milks.

  • PDF

Experimental Studies on the Optimum Pasteurization Condition of the Cow's Milk Produced in Korea IV. The Changes in Chemical Composition and Microbiological Aspects of Ultra-High Temperature Sterilized Milk (한국산(韓國産) 우유(牛乳)의 적정(適正) 살균조건(殺菌條件)에 관(關)한 실험적(實驗的) 연구(硏究) IV. 초고온처리(超高溫處理)에 의한 우유(牛乳)의 화학적(化學的) 조성(組成) 및 미생물학적(微生物學的) 성상(性狀)의 변화(變化))

  • Kim, Jong Woo;Nahm, Myung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.318-328
    • /
    • 1987
  • The results of experiment to review the optimum pasteurization condition for the raw milk produced in Korea by using UHT procedure of $100-145^{\circ}C$, the changes in chemical composition, microbiological aspects and the keeping quality of the heat treated milk are summarized as follows: 1. In UHT milk sterilized at $100-145^{\circ}C$, the pH value decreased from 6.55 to 6.33 but protein, fat, lactose and ash did not show significance changes while casein nitrogen and non-protein nitrogen increased but non-casein nitrogen and filterable nitrogen decreased. 2. Calcium content decreased gradually from 119.8 mg/100 g of raw milk to 75.75 mg/100 g at $145^{\circ}C$ as the heat treatment increased and vitamin C decreased rapidly from 1.37 mg/100 ml to 0.82 mg/ 100 ml while artificial digestibility increased from 14.07% of raw milk to 26.0% as the heat treatment increased. 3. As the heat treatment increased, microorganism counts decreased to $0.5{\times}10^2/ml$ and were not found above $135^{\circ}C$ - coliforms and psychrotrophic bacteria from $100^{\circ}C$ thermoduric bacteria, thermophiles, mould and yeast from $125-130^{\circ}C$. Heat treatment above $135^{\circ}C$ showed 100% sterilization effect. 4. The result of preservation test for heat treated milk did not show any significant changes in titratable acidity and general composition at $4^{\circ}C$, $25^{\circ}C$ and $37^{\circ}C$ up to 15 days. Viable bacteria counts, coliforms and psychrotrophic bacteria were not found but loss of vitamin and increase in viable bacteria counts appeared after 20 days.

  • PDF