• Title/Summary/Keyword: UHMWPE

Search Result 97, Processing Time 0.022 seconds

Correlation of oxidation, Crosslinking, and Wear of UHMWPE (초고분자량 폴리에틸렌의 산화, 가교, 마멸과의 상관관계)

  • 이권용;이근호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.296-302
    • /
    • 1999
  • The effect of post-irradiation shelf-aging time on the wear of orthopaedic grade UHMWPE was investigated, and wear results were correlated with the time-dependent microstructural changes of polyethylene after gamma irradiation sterilization. The levels of oxidation and crosslinking in the shelf-aged acetabular liners were examined by FTIR and hot xylene extraction, respectively, and uni-directional repeat pass sliding wear tests were conducted by using a pin-on-disc wear tester. Gamma irradiation sterilization in the air environment caused an increase of oxidation, crosslinking, and wear resistance. With aging, however, oxidation progressed and decreased the level of crosslinking. This resulted in a decrease of wear resistance of UHMWPE that was accompanied with the existence of white bands and brittle cracking.

  • PDF

Effect of ${\gamma}-ray$ Irradiation on Mechanical Properties of Ultra-High Molecular Weight Polyethylene (감마선 조사에 의한 초고분자량 폴리에틸렌의 기계적 특성 변화)

  • Lee, Jong-Dae;Cheong, Seon-Hwan;Choi, Seong-Dae;Kim, Hyun-Mook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.108-114
    • /
    • 2008
  • Uniaxial tension and compression test were conducted on conventional and crosslinked ultra-high molecular polyethylene (UHMWPE) all prepared from the same lot of medical grade GUR 1050. The conventional materials were unirradiated and gamma irradiated with $25kGy{\sim}200kGy$. Gamma irradiated processing was found to significantly impact the crystallinity, and hence the mechanical behavior, of the highly crosslinked UHMWPE. The crystallinity and radiation dose were key predictors of the uniaxial yielding, hardness, plastic flow, and failure properties of conventional and highly crosslinked UHMWPE. The correlation model from experiments would be the basic information to design the liner of artificial joint.

PIII&D (Plasma immersion ion implantation & deposition) 기술을 이용하여 제조된 NbN 박막이 인공관절용 UHMWPE 소재의 마모에 미치는 영향 평가

  • Park, Won-Ung;Kim, Eun-Gyeom;Mun, Seon-U;Kim, Gyeong-Hun;Im, Sang-Ho;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.228-228
    • /
    • 2012
  • 인공관절은 노인성 질환이나 자가 면역질환, 신체적인 외상 등으로 인하여 발생하는 관절의 손상 부위를 대체하기 위하여 고안된 관절의 인공 대용물이다. 인공 관절 중 인공 고관절의 경우 관절 운동을 하는 라이너(Liner)와 헤드(Head) 부분이 마모에 관여하여 인공관절의 수명에 영향을 미치게 되는데, 헤드 소재로서는 Co-Cr-Mo 합금이, 라이너 소재로서는 고분자 소재인 UHMWPE (Ultra High Molecular Weight Polyethylene)가 주로 사용되고 있다. 이러한 MOP (Metal-On-Polymer) 구조의 인공관절의 경우, 충격흡수의 장점이 있는 반면, 관절 운동시 발생하는 UHMWPE의 wear debris에 의한 골용해로 인하여 관절이 느슨해지는 문제점이 발생하여 재시술을 필요로 하게 된다. 또한 메탈 헤드의 마모로 인한 금속이온의 용출은 세포 독성의 문제를 야기하여 인공관절의 수명을 낮추는 또 하나의 요인이 되고 있다. 이러한 문제점들을 해결 하기 위하여, 본 연구에서는 PIII&D (Plasma Immersion Ion Implantation & Deposition)공정을 이용하여 Co-Cr-Mo 합금 소재 위에 niobium nitride (NbN) 박막을 증착하여 상대재인 UHMWPE의 마모를 줄이고자 하는 연구를 진행하였다. 마모량의 감소를 위하여, 박막을 증착하기 전에 Co-Cr-Mo 합금 위에 질소를 이온주입 하는 pre-ion implantation 공정을 도입하였으며, Co-Cr-Mo 합금과 NbN박막 사이의 접착력을 증가시키기 위하여 박막의 증착 초기에 이온주입과 증착을 동시에 수행하는 dynamic ion mixing공정을 수행하였다. 실험 결과 pre-ion implantation 공정을 도입한 경우 현재 상용화 되어있는 Co-Cr-Mo 합금에 비하여 마모량을 2배 이상 감소시키는 것을 확인 할 수 있었으며, dynamic ion mixing 공정을 도입한 경우 장시간의 마모 시험에서도 UHMWPE의 마모량을 2배 가까이 줄일 수 있었다.

  • PDF

The Effect of Polymer Blending and Extension Conditions on the Properties of Separator Prepared by Wet Process for Li-ion Secondary Battery (고분자 블렌딩 및 연신조건이 리튬 이온전지용 습식 Separator의 물성에 미치는 영향)

  • 문성인;손영수;김순식;김진열
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • The separator made from the blends of high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) was prepared by wet processing to use as Li-ion secondary battery. We investigated effects of the blending of the polymers and the film extension on the mechanical properties of the separator. The mechanical strength of separator increased with increasing molecular weights and contents of UHMWPE, for instance about $1000 kg/\textrm{cm}^2$ with the five times extended film of 6 wt% UHMWPE. The pores of the separator were very uniform with the size of 0.1~$0.12\mu\textrm{m}$. The shut-down characteristic quickly increased at around $130^{\circ}C$ and the fusion temperature was $160^{\circ}C$, so it could be applied to the lithium ion secondary battery.

Wear Resistance of Crosslinked Ultra-high Molecular Weight Polyethylene (가교된 초고분자량 폴리에틸렌의 내마모성)

  • Im, Chae-Ik;Lee, Gwi-Jong;Jo, Jae-Yeong;Choe, Jae-Bong;Choe, Gwi-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.99-106
    • /
    • 1999
  • Ultra-high molecular weight polyethylene (UHMWPE) was crosslinked in the melt state to enhance wear resistance, Dicumyl peroxide (DCP) and triallyl cyanurate (TAC) was used as a crosslinking agent and a promoter, respectively. With increasing amount of DCP and TAC used, gel content of crosslinked UHMWPE (XUMPE) increased, while the melting temperature, crystallizaiton temperature, crystallinity, and tensile properties decreased. The results of pin-on-disk wear test and ball-on-disk test with small applied load showed reduced wear volumes of XUMPE from that of the unmodified UHMWPE. As the wear mechanism effected in the experimental condition of this study was thought to be deformation rather than adhesion or fatigue, a new parameter, the ratio of maximum contact stress to yield stress, was proposed to correlate well with observed wear resistance. In ball-on-disk wear test with larger applied load, XUMPE showed higher wear volumes than that of the unmodified UHMWPE which were accompanied with increased friction coefficients and surface roughness of the wear tracks. When contact stress was well above yield stress, the failure of XUMPE, as well as deformation, was thought to be much accelerated.

  • PDF

Sliding Wear Behavior of UHMWPE against Novel Low Temperature Degradation-Free Zirconia/Alumina Composite

  • Lee, K.Y.;Lee, M.H.;Lee, Y.H.;Seo, W.S.;Kim, D.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.365-366
    • /
    • 2002
  • The sliding wear behavior of ultra high molecular weight polyethylene (UHMWPE) was examined on a novel low temperature degradation-free zirconia/alumina composite material and conventional alumina and zirconia ceramics used for femoral head in total hip joint replacement. The wear of UHMWPE pins against these ceramic disks was evaluated by performing linear reciprocal sliding and repeat pass rotational sliding tests for one million cycles in bovine serum. The weight loss of polyethylene against the novel low temperature degradation-free zirconia/alumina composite disks was much less than those against conventional ceramics for all tests. The mean weight loss of the polyethylene pins was more io the linear reciprocal sliding test than in the repeal pass rotational sliding lest for all kinds of disk materials. Neither the coherent transfer film nor the surface damage was observed on the surface of the novel zirconia/alumina composite disks during the test. The observed r,'stilts indicated that the wear of the polyethylene was closely related to contacting materials and kinematic motions. In conclusion, the novel zirconia/alumina composite leads the least wear of polyethylene among the tested ceramics and demonstrates the potential as lhe alternative materials for femoral head in total hip joint replacement.

  • PDF

Accelerated Life Test of Knife Protection Fabrics for Cut Resistance (절단 방지용 방검소재의 가속수명시험)

  • Chang, Gap-Shik;Jung, Ye-Lee;Jeon, Byong-Dae
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.270-275
    • /
    • 2015
  • Purpose : UHMWPE (Ultra-high-molecular-weight-polyethylene) is one of the most widely used material in knife protection clothes because of high strength, elasticity, and light weight. The purpose of this study is to develop the accelerated life test method and predict the lifetime for the knife protection fabric composed by UHMWPE. Methods : In this study, degradation characteristics of UHMWPE fibers and knife protection fabric for cut resistance were evaluated under the hydrolysis and photo-degradation conditions. It was found out that the degradation rate of retained tensile strength was more significant in the photo-degradation than hydrolysis. Therefore, the failure time was determined as the time that the retained tensile strength in photo-degradation is less than 50%. Considering an acceleration factor for irradiance and exposure time, the lifetime was predicted from the calculated failure time. Results : As a result of the accelerated life test, the $B_{10}$ lifetime of knife protection fabric composed by UHMWPE fibers is estimated as 2.8 years for a 90% statistical confidence level. Conclusion: Since the lifetime is predicted by the view-point of radiant exposure in this study, there is a possibility that the estimated lifetime may differ from the actual lifetime. However, it is considered as an useful methodology to estimate the long-term lifetime of knife protection fabrics.

Initial Crack Length Effect for the Interlaminar Mode I Energy Release Rate on a Laminated UHMWPE/CFRP Hybrid Composite (UHMWPE/CFRP 적층하이브리드 복합재의 층간 Mode I 에너지해방율에 미치는 초기균열길이의 영향)

  • Song, Sang Min;Kang, Ji Woong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • A variety of composite materials are applied to industries for the realization of light weight and high strength. Fiber-reinforced composites have different strength and range of application depending on the weaving method. The mechanical performance of CFRP(Carbon Fiber Reinforced Plastic) in many areas has already been demonstrated. Recently, the application of hybridization has been increasing in order to give a compensation for brittleness of CFRP. Target materials are UHMWPE (Ultra High Molecular Weight Polyethylene), which has excellent cutting and chemical resistance, so it is applied not only to industrial safety products but also to places that lining performance is expected for household appliances. In this study, the CFRP and UHMWPE of plain weave, which are highly applicable to curved products, were molded into laminated hybrid composite materials by autoclave method. The mechanical properties and the mode I failure behavior between the layers were evaluated. The energy release rate G has decreased as the initial crack length ratio increased.

Dynamic Compressive Creep of Extruded Ultra-High Molecular Weight Polyethylene

  • Lee, Kwon-Yong;David Pienkowski;Lee, Sungjae
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1332-1338
    • /
    • 2003
  • To estimate the true wear rate of polyethylene acetabular cups used in total hip arthroplasty, the dynamic compressive creep deformation of ultra-high molecular weight polyethylene (UHMWPE) was quantified as a function of time, load amplitude, and radial location of the specimen in the extruded rod stock. These data were also compared with the creep behavior of polyethylene observed under static loading. Total creep strains under dynamic loading were only 64%, 70%, and 61% of the total creep strains under static loading at the same maximum pressures of 2 MPa,4 MPa, and 8 MPa, respectively. Specimens cut from the periphery of the rod stock demonstrated more creep than those cut from the center when they were compressed in a direction parallel to the extrusion direction (vertical loading) whereas the opposite was observed when specimens were compressed in a direction perpendicular to the extrusion direction (transverse loading). These findings show that creep deformation of UHMWPE depends upon the orientation of the crystalline lamellae.