• Title/Summary/Keyword: UHF 안테나

Search Result 190, Processing Time 0.032 seconds

Vivaldi Array Antenna for the Toll Gate UHF RFID System (톨게이트 UHF RFID 시스템에 적합한 비발디 배열 안테나)

  • Yu, Jang-Ho;Son, Tae-Ho
    • 한국ITS학회:학술대회논문집
    • /
    • v.2006 no.10
    • /
    • pp.179-181
    • /
    • 2006
  • 톨게이트에서 사용되는 UHF RFID 비발디 배열 안테나를 설계하였다. 안테나의 주파수 대역은 미국 기준의 RFID UHF 대역으로 $902{\sim}928MHz$이다. 안테나 설계는 먼저 단일소자 비발디 안테나를 설계한 후, 전력분배 비율 0.3:1:1:0.3으로 $1{\times}4$ 배열한 안테나로 설계하였다. 설계된 배열 안테나는 VSWR 2:1이하에서 $850{\sim}942MHz$인 S11 특성을 보였다. 이득은 최대방사 9.93dBi를 얻었다. 안테나 제작은 주파수를 높여 scale down하여, 1소자 비발디를 제작하고 이의 특성을 측정하였다.

  • PDF

Long Reading Range Yagi-Uda UHF RFID Tag Antennas with Small Back-Lobe (후엽이 작은 장거리 인식용 Yagi-Uda UHF RFID 태그 안테나 설계)

  • Lee, Kyoung-Hwan;Chung, You-Chung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1211-1216
    • /
    • 2007
  • Yagi-Uda UHF RFID(Radio Frequency Identification) tag antennas with long reading range have been designed. According to ISO-18000, EIRP(Effective Isotropic Radiation Power) of reader and reader antenna is limited as 36 dBm. Therefore, the gain of a tag antenna should be high enough to extend the reading range. Yagi-Uda antenna has been applied to a UHF RFID tag antenna, and high gain and long reading range have been achieved. Three different of Yagi-Uda UHF antennas have been optimized to achieve the small size with low back-lobe patterns. The sizes, reading ranges and return loss of Yagi-Uda tag antennas are compared and measured.

Miniaturization of UHF Planar Antenna Employing Slot-loading (Slot-loading에 의한 UHF 대역 평면 안테나의 소형화 설계)

  • Chun, Joong-Chang;Lee, Dong-Hyun;Kim, Tae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.685-688
    • /
    • 2008
  • Planar antennas are very efficient for the use of the out-door data transmission applications due to their low-profile characteristics. But the size of the antenna in UHF band blocks the practical usage. In this paper, a miniaturized planar antenna is investigated for the application of AMR system in UHF band. The designed antenna is fabricated in the form of the microstrip patch on the FR-4 substrate. The miniaturization is achieved by slot-loading on the patch. First, effects of simple slots on the size reduction are analyzed, followed by the design using more complex slots resulting in the reduction ratio of 37.9% in 425.6 MHz and bandwidth of 3.8 MHz. The effect of epoxy coating for the protection is also investigated.

  • PDF

Miniaturization of UHF Planar Antenna Employing Slot-loading (슬롯 장하에 의한 UHF 대역 평면 안테나의 소형화 설계)

  • Chun, Joong-Chang;Lee, Dong-Hyun;Kim, Tae-Soo;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.979-983
    • /
    • 2008
  • Planar antennas are very efficient for the use of the out-door data transmission applications due to their low-profile characteristics. But the size of the antenna in UHF band blocks the practical usage. In this paper, a miniaturized planar antenna is investigated for the application of AMR system in UHF band. The designed antenna is fabricated in the form of the microstrip patch on the FR-4 substrate. The miniaturization is achieved by slot-loading on the patch. First, effects of simple slots on the size reduction are analyzed, followed by the design using more complex slots resulting in the reduction ratio of 37.9% in 425.6 MHz and bandwidth of 3.8 MHz. The effort of epoxy coating for the protection is also investigated.

Characteristics of UHF Antenna with microstrip structure (UHF 대역용 마이크로 스트립 안테나 특성)

  • Park, Yong-Wook
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.5
    • /
    • pp.217-222
    • /
    • 2008
  • The characteristics of UHF antenna with microstrip structure was studied. Design parameters as center frequency, band width, and VSWR by slot length, stub was analyzed by HFSS simulator. UHF antenna with microstrip structure was fabricated using FR4_epoxy substrate of 4.4 dielectric constant.

  • PDF

Design of a compact quasi-Yagi antenna for portable RFID reader (휴대형 RFID 리더용 소형 준-야기 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • In this paper, we considered a design method of a compact quasi-Yagi antenna for portable UHF RFID readers. The antenna consists of a dipole driver and a reflector printed on a dielectric substrate, and it is fed by a microstrip line. In order to reduce the antenna size, the dipole and reflector are bent and the balun between the feeding microstrip line and coplanar strip (CPS) line is integrated within the CPS line. The effects of the geometrical parameters of the proposed antenna on the antenna performance are examined, and the parameters are adjusted to be suitable for the operation in UHF RFID band (902-928 MHz). The size of the fabricated antenna is $70mm{\times}75mm$, and the experiment results reveal a frequency band of 892-942 MHz for a voltage standing wave ratio < 2, a gain > 3.5 dBi, and a front-to-back ratio > 6.6 dB over the frequency band for UHF RFID.

A Design of a circularly polarized small UHF RFID antenna (소형 원형편파 UHF RFID 대역 융합형 안테나 설계)

  • Chae, Gyoo-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.109-114
    • /
    • 2015
  • A circularly polarized small UHF RFID reader antenna is presented. The antenna is composed of four elements and printed on the plastic substrate(${\varepsilon}_r=2.2$, t=5mm). Each element is fed by a probe which is sequentially connected to the feed line. The feed line is manufactured on the FR-4 substrate(t=1.0mm, ${\varepsilon}_r=4.7$). The simulation results shows that the antenna can be achieved a return loss of 12dB, gain of 3.46dBic over the UHF band of 902-928MHz. According to our simulation results, two prototype antennas are manufactured and measured. The obtained antennas operate in UHF RFID bands and can be adapted for various portable applications. In addition, a parametric study is conducted to facilitate the design and optimization processes.

Effect Analysis of Surface-Icing on the UHF-band Antenna for Space Launch Vehicle (우주발사체용 UHF-대역 안테나의 표면결빙에 의한 영향분석)

  • Hwang, Soosul;Oh, Changyul;Ma, Keunsu
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.104-108
    • /
    • 2014
  • This paper represents the effect analysis results of surface-Icing on the UHF-band antenna for Space Launch Vehicle. In order to obtain structural model of the surface-icing, Relative Permittivity of ice at $-180^{\circ}C$ was extracted. Using this surface-Icing model, UHF-band antenna simulation and comparative analysis about the antenna parameters such as resonance frequency, reflection loss and radiation pattern were performed for each case of with or without surface-icing. Simulation results show that resonance frequency is shifted out of operation frequency due to the additional ice permittivity. This resonance frequency changes cause severe affect to the antenna performance and its radiation pattern.

Design of UHF TV Sleeve Antenna using the Coaxial Cable (동축선로를 이용한 휴대 지상파 UHF TV 수신용 슬리브 안테나 설계)

  • Jang Inseok;Son Taeho;Park Youngtae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.177-179
    • /
    • 2005
  • 본 논문에서는 지상파 UHF 휴대용 슬리브 안테나를 설계 제작하였다. 이 안테나는 차량 네비게이션장치에 들어가는 지상파 UHF TV 수신을 위한 안테나이다. 기존 모노폴 형태가 갖는 단점을 제거하고 성능 향상을 위해 세트 external 안테나로, 필요시에 목걸이형으로 부착이 가능한 구조를 가지고 있다. 동축선을 이용하여 슬리브 다이폴 안테나로 설계함으로써 안테나 입장에서 볼 때 접지가 부족한 문제를 해결하였다. 제작 측정한 결과 UHF 대역에서 VSWR 2:1 이하의 특성을 만족하였다.

  • PDF

Dual-band RFID Tag Antenna Applicable for RF Power Harvester System (RF 에너지 충전 시스템 기능을 위한 이중대역 RFID 태그 안테나)

  • Mun, Byeonggwi;Rhee, Changyong;Kim, Jae-Sik;Cha, Junghoon;Lee, Byungje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.46-51
    • /
    • 2013
  • In this paper, a dual-band antenna is proposed for the RF power harvester system as well as RFID tag. The proposed antenna operates as the passive and active RFID tag antenna in the UHF and microwave band, respectively. In addition, to charge the battery of an active RFID tag in the microwave band, it harvest the RF signal for tagging from the passive RFID tag antenna in the UHF band. The proposed antenna operates in the UHF band (917~923.5 MHz) and microwave band (2.4~2.45 GHz). In order to obtain the dual-band operation, the dipole structure and meander parasitic elements are proposed as the ${\lambda}/2$ and $1{\lambda}$ dipole antenna, respectively. The radiating dipole structure in the microwave band acts as the coupled feed for the meander parasitic elements in the UHF band. The impedance bandwidth (VSWR < 2) of the proposed antenna covers 917~923.5 MHz (UHF band) and 2.4~2.45 GHz (Microwave band). Measured total efficiencies are over 45 % in the UHF band and over 70 % in the microwave band. Peak gains are over 0.18 dBi and 2.8 dBi in the UHF and microwave band with an omni-directional radiation pattern, respectively.