• 제목/요약/키워드: UGT1A3

검색결과 27건 처리시간 0.025초

Effect of Glycyrrhizae Radix on the Expression of UDP-Glucuronosyltransferase-1A1 (UGT1A1) in Rat Liver

  • Moon, A-Ree;Lee, Song-Deuk
    • Biomolecules & Therapeutics
    • /
    • 제4권3호
    • /
    • pp.280-284
    • /
    • 1996
  • Licorice has been widely used in combination with other herbs or synthetic drugs for various disorders. In an effort to study the effect of licorice roots (Glycyrrhizae Radix, GR) and glycyrrhizin on the hepatic glucuronidation, we have previously found that the pretreatment of GR or glycyrrhizin for 6 days resulted in a marked increase in the enzymatic activity of 3-methylcholanthrene (3-MC)-inducible hepatic UDP-glucuronosyltransferase (UGT) isozyme that has high affinity toward phenolic substrates (p-nitrophenol form, UGTIA) in Sprague-Dawley rats. As an approach to elucidate the mechanism for the enzyme activation by licorice in rat liver, we examined the levels of hepatocellular mRNAs for UGTIA upon the treatment of GR or glycyrrhizin. The hepatic mRNAs were extracted from Sprague-Dawley rats and Wistar rats after the treatment of the methanol extract of GR (1 g/kg, p.o.), glycyrrhizin (23 mg/kg, p.o.) for 6 days, or 3-MC (40 mg/kg, i.p.) for 3 days. Using the UGT1A1 CDNA as a probe, we found that the mRNAs for the enzyme were induced by 3-MC treatment while those were influenced neither by GR nor by glycyrrhizin in both strains of rats. These results indicate that the activation of rat liver UGTI A by licorice and glycyrrhizin was not due to the induction of mRNAs for the enzyme.

  • PDF

Sub-acute toxicity and effect of Hwangryunhaedok-tang on human drug-metabolizing enzymes

  • Jin, Seong Eun;Lee, Mee-Young;Seo, Chang-Seob;Shin, Hyeun-Kyoo;Cho, Jae-Woo;Ha, Hyekyung
    • 대한한의학회지
    • /
    • 제38권2호
    • /
    • pp.15-30
    • /
    • 2017
  • Objectives: Hwangryunhaedok-tang (HHT; Huanglianjiedu-tang, Orengedoku-to), a traditional herbal formula, is used for treating inflammation, hypertension, gastritis, liver dysfunction, cerebrovascular diseases, dermatitis and dementia. The objective of this study was to assess the sub-acute toxicity of HHT in Sprague-Dawley (SD) rats, and its effect on the activities of human microsomal cytochrome P450s (CYP450s) and UDP-glucuronosyltransferases (UGTs). Methods: Male and female SD rats were orally administered HHT once daily at doses of 0, 500, 1000 and 2000 mg/kg for 4 weeks. We analyzed mortality, clinical observations, body weight, food consumption, organ weights, urinalysis, hematology, serum biochemistry, and histopathology. The activities of major human CYP450s (CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1) and UGTs (UGT1A1, UGT1A4, and UGT2B7) were assessed using in vitro fluorescence- and luminescence-based enzyme assays, respectively. Results: No toxicologically significant changes related to the repeated administration of HHT were observed in both male and female SD rats. The no observed adverse effect level (NOAEL) value was more than 2000 mg/kg/day for both sexes. HHT inhibited the activities of human microsomal CYP1A2, CYP2C19, CYP2D6, and CYP2E1, whereas it weakly inhibited the activities of CYP2B6, CYP2C9, CYP3A4, and UGT1A1. In addition, HHT negligibly inhibited the activities of human microsomal UGT1A4 and UGT2B7 with $IC_{50}$ values in excess of $1000{\mu}g/mL$. Conclusions: Our findings indicate that HHT may be safe for repeated administration up to 4 weeks. In addition, these findings provide information on the safety and effectiveness of HHT when co-administered with conventional drugs.

Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis

  • Nguyen, Ngoc Quy;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.419-427
    • /
    • 2017
  • Background: Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Methods: Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. Results: PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. Conclusion: PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.

지속성 고빌리루빈혈증과 연관된 모유 황달에서 UGT1A1(Gly71Arg, TATA box) 다형성에 대한 연구 (The relationship between Gly71Arg and TATA box polymorphism of GT1A1 gene and prolonged hyperbilirubinemia of breast milk feeding infant in Korean)

  • 이재명;한영지;김지숙;김은령
    • Clinical and Experimental Pediatrics
    • /
    • 제51권2호
    • /
    • pp.150-155
    • /
    • 2008
  • 목 적 : 모유 황달은 지속성 황달을 일으키는 중요한 원인이다. 모유 황달은 모유의 여러 가지 성분으로 인해 일어난다고 알려져 있지만 아직 그 원인이 명확하게 밝혀지지 않았으나 이전의 연구에서는 모유 황달이 가족력과 관계있다는 결과도 제시되었다. 이에 저자들은 신생아 황달을 가진 모유수유 환아들에서 Gly71Arg와 TATA box 유전자의 다형성을 조사한 후 이것이 한국인 신생아의 지속성 황달과 연관성이 있는지 알아보고자 본 연구를 시행하였다. 방 법 : 혈중 빌리루빈 수치가 10 mg/dL 이상의 건강하고 위험인자가 없는 모유수유를 시행한 만삭아 중 신생아 황달 환자 50명과 대조군 162명으로부터 혈액 0.5 cc를 채취하여 DNA를 분리하였고 TATA box와 Gly71Arg 유전자를 PCR 증폭하였다. 이를 염기서열 분석 방법을 통해 각 유전자의 다형성을 확인하였다. 결 과 : Gly71Arg 다형성은 환자군 50명 중 2명(4.0%)에서 AA로 40명(80.0%)은 GA로 나타났으며, 유전자가 분석된 대조군 129명 중 5명(3.9%)에서 AA로 4명(3.1%)은 GA로 나타났고, 대립유전자 빈도는 대조군에서 44.0% 환자군에서 5.5%로 나타났다(P=0.000001). TATA box는 환자군 50명 중 1명에서 $A(TA)_6TAA/A(TA)_7TAA$로 나타났으며 대조군에서 모두 $A(TA)_6TAA/A(TA)_6TAA$로 나타났다. 결 론 : 모유수유한 한국인 신생아 지속성 고빌리루빈혈증에서 UGT1A1의 Gly71Arg과 TATA box의 다형성을 확인하였으며, Gly71Arg 유전자의 다형성은 고빌리루빈혈증군에서 대조군에 비해 의미 있게 증가되어 모유수유한 한국인 신생아 지속성 고빌리루빈혈증과 연관이 있었고, TATA box의 다형성은 연관이 없었다.

Glycosylation of Semi-Synthetic Isoflavene Phenoxodiol with a Recombinant Glycosyltransferase from Micromonospora echinospora ATCC 27932

  • Seo, Minsuk;Seol, Yurin;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권5호
    • /
    • pp.657-662
    • /
    • 2022
  • Glycosyltransferase (GT)-specific degenerate PCR screening followed by in silico sequence analyses of the target clone was used to isolate a member of family1 GT-encoding genes from the established fosmid libraries of soil actinomycetes Micromonospora echinospora ATCC 27932. A recombinant MeUGT1 was heterologously expressed as a His-tagged protein in E. coli, and its enzymatic reaction with semi-synthetic phenoxodiol isoflavene (as a glycosyl acceptor) and uridine diphosphate-glucose (as a glycosyl donor) created two different glycol-attached products, thus revealing that MeUGT1 functions as an isoflavonoid glycosyltransferase with regional flexibility. Chromatographic separation of product glycosides followed by the instrumental analyses, clearly confirmed these previously unprecedented glycosides as phenoxodiol-4'-α-O-glucoside and phenoxodiol-7-α-O-glucoside, respectively. The antioxidant activities of the above glycosides are almost the same as that of parental phenoxodiol, whereas their anti-proliferative activities are all superior to that of cisplatin (the most common platinum chemotherapy drug) against two human carcinoma cells, ovarian SKOV-3 and prostate DU-145. In addition, they are more water-soluble than their parental aglycone, as well as remaining intractable to the simulated in vitro digestion test, hence demonstrating the pharmacological potential for the enhanced bio-accessibility of phenoxodiol glycosides. This is the first report on the microbial enzymatic biosynthesis of phenoxodiol glucosides.

Anti-inflammatory Effects in LPS-treated RAW 264.7 Cells and the Influences on Drug Metabolizing Enzyme Activities by the Traditional Herbal Formulas, Yongdamsagan-Tang and Paljung-san

  • Ha, Hyekyung;Jin, Seong Eun;Seo, Chang-Seob;Shin, Hyeun-kyoo
    • 대한한의학회지
    • /
    • 제42권4호
    • /
    • pp.10-24
    • /
    • 2021
  • Objectives: Yongdamsagan-tang (YST) and Paljung-san (PJS) in traditional medicine and finasteride in modern medicine are used to treat benign prostatic hyperplasia (BPH). In recent, the use of combination herbal remedies with conventional drugs has been increasing. Therefore, we investigated the anti-inflammatory effects of these drugs to treat BPH and the influence of herbal formulas on finasteride metabolism. Methods: The inhibitory effects of the herbal formulas and finasteride on the production of inflammatory mediators and cytokines were determined in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Additionally, the influence of herbal formulas on activities of human drug metabolizing enzymes (DMEs) was assessed using human microsomal enzymes. Results: We observed that YST, PJS and finasteride inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2) and interleukin-6 (IL-6) in RAW 264.7 cells. The half maximal inhibitory concentration (IC50) of YST on PGE2 production was calculated to be below 25 ㎍/mL. YST inhibited the activity of uridine diphosphate-glucuronosyltransterase (UGT) 1A4 with an IC50 value of 49.35 ㎍/mL. The activities of cytochrome P450 (CYP) 1A2, CYP2B6, CYP2C19, CYP3A4, and UGT1A1 were inhibited by PJS (IC50 < 100 ㎍/mL, each). Although PJS and YST inhibited the activities of CYP3A4 and UGT1A4, respectively, these formulas may not influence the metabolism of finasteride because the IC50 values of herbal formulas on DMEs are too high to affect metabolism. Conclusions: Our results suggest that the combination of finasteride and YST or PJS might not influence their drug metabolism and that the drugs may have synergistic effects against BPH.

생물전환으로 생리활성물질인 trifolin의 생합성 (Biosynthesis of trifolin, a bioactive flavonoid by biotransformation)

  • 노혜령;강주영;김봉규
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.309-316
    • /
    • 2021
  • Trifolin (kaempferol 3-O-galactoside)는 플라보놀 그룹에 속하는 물질로 아토피, 항균, 폐암에 효과가 있는 것으로 알려져 있다. Trifolin은 다양한 식물에서 추출하여 사용하고 있지만 추출 과정이 복잡하고, 수율이 낮으며, 추출을 위한 바이오매스를 얻는데 계절적 어려움이 있다. 생물전환은 저렴한 화합물에서 고부가가치 화학물질을 생산할 수 있는 대체 수단으로 이용된다. 본 연구에서는 naringenin으로부터 trifolin을 생합성하기 위해 3개의 유전자(PeFLS 및 OsUGE-PhUGT)를 각각의 대장균에 도입한 BL-FLS균주와 BL-UGTE균주를 이용하여 공조배양시스템을 개발하였다. Naringenin으로부터 trifolin을 생합성하기 위해 세포의 밀도, 생물전환 온도, 재조합 단백질 유도의 적정 IPTG농도 및 시간, 기질 공급 농도 등의 최적화를 실시하였다. 최적화된 공동 배양 발효 시스템을 통해 67.3 mg/L의 trifolin을 성공적으로 생합성 하였다.

Stepwise Synthesis of Quercetin Bisglycosides Using Engineered Escherichia coli

  • Choi, Gyu Sik;Kim, Hyeon Jeong;Kim, Eun Ji;Lee, Su Jin;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1859-1864
    • /
    • 2018
  • Synthesis of flavonoid glycoside is difficult due to diverse hydroxy groups in flavonoids and sugars. As such, enzymatic synthesis or biotransformation is an approach to solve this problem. In this report, we used stepwise biotransformation to synthesize two quercetin bisglycosides (quercetin 3-O-glucuronic acid 7-O-rhamnoside [Q-GR] and quercetin 3-O-arabinose 7-O-rhamnoside [Q-AR]) because quercetin O-rhamnosides contain antiviral activity. Two sequential enzymatic reactions were required to synthesize these flavonoid glycosides. We first synthesized quercetin 3-O-glucuronic acid [Q-G], and quercetin 3-O-arabinose [Q-A] from quercetin using E. coli harboring specific uridine diphopsphate glycosyltransferase (UGT) and genes for UDP-glucuronic acid and UDP-arabinose, respectively. With each quercetin 3-O-glycoside, rhamnosylation using E. coli harboring UGT and the gene for UDP-rhamnose was conducted. This approach resulted in the production of 44.8 mg/l Q-GR and 45.1 mg/l Q-AR. This stepwise synthesis could be applicable to synthesize various natural product derivatives in case that the final yield of product was low due to the multistep reaction in one cell or when sequential synthesis is necessary in order to reduce the synthesis of byproducts.

Purple Rice Bran Extract Attenuates the Aflatoxin B1-Induced Initiation Stage of Hepatocarcinogenesis by Alteration of Xenobiotic Metabolizing Enzymes

  • Suwannakul, Nattawan;Punvittayagul, Charatda;Jarukamjorn, Kanokwan;Wongpoomchai, Rawiwan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3371-3376
    • /
    • 2015
  • Pigmented rice bran has been suggested to be a valuable source of beneficial phytochemicals. We investigated genotoxic and anti-genotoxic effects of purple rice bran extract (PRBE) in rats using a liver micronucleus assay. Purple rice bran was extracted with methanol, obtaining large amounts of phenolic compounds, including anthocyanins and small amounts of gamma-oryzanol. The experimental protocols were divided into two sets. Male rats were divided into three groups. Group 1 was a negative control, while Groups 2 and 3 were fed with 100 and 500 mg/kg bw of PRBE, respectively, for 28 days. PRBE had no effect on micronucleus formation or xenobiotic metabolizing enzymes in rat liver. Experiments concerning the effect of PRBE on $AFB_1$ showed that PRBE significantly lessened the amount of micronucleated hepatocytes in $AFB_1$ treated rats. Furthermore, it modulated metabolic activation of $AFB_1$ metabolism in the liver by suppressing activity and protein expression of CYP1A2, CYP3A and CYP 450 reductase, and enhancing phase II enzymes including GST and UGT. Overall, purple rice bran extract was not genotoxic in rats. It exhibited anti-genotoxicity by modulation some xenobiotic enzymes active in $AFB_1$ metabolism.

Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with uridine diphosphate glycosyltransferase genes

  • Yu, Lu;Chen, Yuan;Shi, Jie;Wang, Rufeng;Yang, Yingbo;Yang, Li;Zhao, Shujuan;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.116-124
    • /
    • 2019
  • Background: Ginsenosides are known as the principal pharmacological active constituents in Panax medicinal plants such as Asian ginseng, American ginseng, and Notoginseng. Some ginsenosides, especially the 20(R) isomers, are found in trace amounts in natural sources and are difficult to chemically synthesize. The present study provides an approach to produce such trace ginsenosides applying biotransformation through Escherichia coli modified with relevant genes. Methods: Seven uridine diphosphate glycosyltransferase (UGT) genes originating from Panax notoginseng, Medicago sativa, and Bacillus subtilis were synthesized or cloned and constructed into pETM6, an ePathBrick vector, which were then introduced into E. coli BL21star (DE3) separately. 20(R)-Protopanaxadiol (PPD), 20(R)-protopanaxatriol (PPT), and 20(R)-type ginsenosides were used as substrates for biotransformation with recombinant E. coli modified with those UGT genes. Results: E. coli engineered with $GT95^{syn}$ selectively transfers a glucose moiety to the C20 hydroxyl of 20(R)-PPD and 20(R)-PPT to produce 20(R)-CK and 20(R)-F1, respectively. GTK1- and GTC1-modified E. coli glycosylated the C3-OH of 20(R)-PPD to form 20(R)-Rh2. Moreover, E. coli containing $p2GT95^{syn}K1$, a recreated two-step glycosylation pathway via the ePathBrich, implemented the successive glycosylation at C20-OH and C3-OH of 20(R)-PPD and yielded 20(R)-F2 in the biotransformation broth. Conclusion: This study demonstrates that rare 20(R)-ginsenosides can be produced through E. coli engineered with UTG genes.