This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.
Protein expression patterns of matrix metalloproteinases (MMPs) were examined in mouse reproductive organs during estrous cycle. Estrous cycle was classified into diestrus, proestrus, estrus or metestus and MMP expression was analyzed by zymography using gelatin as a substrate. Uterine fluid (UF) obtained both at diestrus and proestrus exhibited 4 major MMPs including 106kDa, 64kDa, 62kDa and 59kDa gelatinases. However, in UF at estrus, the gelatinolytic activity of 64kDa MMP disappeared and that of 106kDa and 62kDa MMPs dramatically decreased. At metestrus, 64kDa MMP activity reappeared and 106kDa and 62kDa MMP exhibited increased activities such that the band intensity of 106kDa was comparable to that in UF at diestrus. Gelatinolytic activity of 59kDa MMP was not changed throughout the cycle. Both ovarian and oviductal tissue homogenate revealed 4 MMPs which corresponded to the 4 MMPs of UF. However, unlike UF MMPs, gelatinolytic activity of these MMPs did not show distinct changes throughout the cycle. Either an inhibitor of MMP, 1,10-phenanthroline, or a metal chelator, EDTA, abolished the appearance of the above MMP activities in gelatinated gel whereas a serine proteinase inhibitor, phcnylmethylsulfonyl fluoride, failed to inhibit the appearance of MMP activities, proving that gelatinolytic activity of the above reproductive tissues were due to the enzymatic activity of MMP. When gclatinolytic activity of mouse serum was examined, it revealed 5 MMPs (131kDa, 106kDa, 89kDa, 64kDa and 62kDa bands) and one gelatinase (84kDa) band. From these results, it is concluded that the protein expression of MMPs of mouse reproductive organs, particularly uterus, is temporally regulated during estrous cycle and uterine 106kDa, 64kDa and 62kDa MMPs are suggested to play an important role in cyclic tissue remodeling of mouse uterus.
최근 음용수를 위한 UF, MF 막의 적용이 증가하고 있다. UF/MF 막은 재래식 수처리 공정에 비하여 원수 수질 변화에도 안정적인 운전이 가능하고 부지 면적이 작으며 자동화 운전이 가능하다는 장점을 가지고 있다. 현재 대부분의 UF/MF 막시설은 고분자 막을 사용하고 있다. 최근 세라믹 막은 고분자막에 비하여 경쟁력이 있다고 알려지고 있다. 세라믹 막은 높은 투과유량과 약품세정 빈도가 작으며 막의 수명 또한 길어 최근 적용 사례가 증가하고 있다. 따라서 본 연구는 MF 세라믹 막 pilot plant를 완속모래여과 정수장에 적용하였다. 본 연구에 사용된 세라믹 Pilot plant는 3개의 계열이 있으며, 각 계열별로 원수와 모래 여과수를 막의 유입수로 각각 사용하였다. 또한 세라믹 막 공정의 최적화를 위하여 전처리 응집공정으로서 PACl 응집제를 사용하였다. 그리고 화학세정(Chemical Enhanced Backwashing, CEB)은 황산 (500 mg/L)과 차아염소산 (200 mg/L)을 1.5일에 1번씩 모든 계열에 주입하여 이루어졌다. 본 연구 결과 세라믹 막 공정의 전처리 응집공정에서 최적의 응집제 사용은 막의 유입수로 원수와 모래 여과수에 대한 막의 flux를 크게 증가시켰다. 또한 본 연구에서 사용된 최적 응집제 주입량에서 차압상승률은 원수(25 mg/L)의 경우 2.173 kPa/cycle이며, 모래 여과수(5 mg/L)의 경우 0.301 kPa/cycle으로 나타났다.
Reverse osmosis seawater desalination facilities can extend the cleaning cycle and replacement time of the reverse osmosis membrane by pretreatment process. Selection of pretreatment process depends on water quality. It was attempted in this study to select approriate pretreatment process for the Masan bay, which was high in particles and organic content. For this purpose, performances of pretreatment processes such as filter adsorber (FA), pore controllable fiber (PCF), and ultrafiltration (UF) were compared based on the silt density index (SDI). The SDI value of the filtrate should be less than 3. The study results showed that UF can produce the filtrate quality satisfying the requirement. However, the transmembrane pressure (TMP) of UF increased quickly, reaching 0.6 bar within 4 days. In order to secure stable operation, FA and PCF were combined with UF. The study results showed that combination of PCF and UF was able to extend the filtration duration (more than 2 months) until to reach TMP of 0.6 bar.
In order to meet the energy demand, energy production must be done continuously. Hydrogen seems to be the best alternative for this energy production, because it is both an environmentally friendly and renewable energy source. In this study, the hydrogen fuel production of the peaceful nuclear explosives (PACER) fusion blanket as the energy source integrated with Fe-Cl thermochemical water splitting cycle have been investigated. Firstly, neutronic analyzes of the PACER fusion blanket were performed. Necessary neutronic studies were performed in the Monte Carlo calculation method. Molten salt fuel has been considered mole-fractions of heavy metal salt (ThF4, UF4 and ThF4+UF4) by 2, 6 and 12 mol. % with Flibe as the main constituent. Secondly, potential of the hydrogen fuel production as a result of the neutronic evaluations of the PACER fusion blanket integrated with Fe-Cl thermochemical cycle have been performed. In these calculations, tritium breeding (TBR), energy multiplication factor (M), thermal power ratio (1 - 𝜓), total thermal power (Phpf) and mass flow rate of hydrogen (ṁH2) have been computed. As a results, the amount of the hydrogen production (ṁH2) have been obtained in the range of 232.24x106 kg/year and 345.79 x106 kg/year for the all mole-fractions of heavy metal salts using in the blanket.
This study was carried out to investigate the usability of the used frying oil, which was extracted from soybean, as one of the alternative fuel of a small diesel engine. For the experiment, NO. 2 diesel oil [D], used frying oil [UF], and their volumetric blends were applied and analysis of the properties and compositions of the experimental fuels were conducted. A four cycle diesel engine with single cylinder, water cooling system, maximum output 8.1 ㎾/2,200 rpm was selected and a direct injection chamber and a precombustion chamber were attached alternately. The results obtained were as follows: 1. Engine power (BHP) were increased from 4.13~4.27㎾ to 9.08~9.15㎾ for diesel oil, from 4.05~4.19㎾ to 8.44~8.92㎾ for UF, and from 4.01~4.48㎾ to 8.69~9.16㎾ for blend fuel, as the engine speed increased from 1,000 rpm to 2,200 rpm. The BHP in case of the direct combustion chamber were fluctuated higher than those of the pre-combustion chamber. 2. With the engine speed increased, torque of the engine were increased from 39.50~40.80 N.m to 42.89 N.m, then decreased to 39.44~39.77 N.m for diesel oil, and increased from 38.73~40.04 N.m to 40.12~40.82 N.m then decreased as 36.53~38.76 N.m for UF. Torque of the blend fuels were increased from 38.75~41.76 N.m to 40.47~42.89 N.m then decreased to 37.73~39.78 N.m. There is no significant difference of torque between the type of combustion chambers. 3. The specific fuel consumption of the UF was increased about 20 percent depending on the engine speed variations. And in case of direct injection chamber, about 12 percent lower fuel consumption was observed than that of precombustion chamber. 4. NOx emission of the UF was higher than that of diesel oil at above 1,800rpm of the engine speed. In case of the direct injection chamber, NOx emission was revealed higher about 59 percent than that of the precombustion chamber, depending on the range of the engine speeds. 5. Smoke emission was decreased in case of UF compared with diesel oil on direct injection chamber. When using precombustion chamber smoke emission was a little higher than that of the direct injection chamber were showed at the engine speed range. 6. At all the engine speed range, exhaust gas temperatures were decreased 2~3$^{\circ}C$ for UF used engine compared with those of the diesel oil. The exhaust gas temperature of the direct injection chamber was higher than that of the precombustion chamber by 72$^{\circ}C$. 7. Unburnt materials remained in the cylinder in case of the pre-combustion chamber was smaller and softer than that of the direct combustion chamber. 8. The feasibility of the blend fuel B-1 and B-2 were verified as a direct combustion chamber was attached to the diesel engine, with respect to the power performance of the engine.
국내에는 다수의 원자력시설이 존재하며, 지리적으로 비핵화 대상국인 북한을 주변국으로 두고 있다. 변화하는 국제 정세에 따른 선제적 대응으로 대상시설에 대한 핵감식 데이터를 구축할 필요가 있다. 이를 위해 국내 원자력시설 및 핵연료 주기를 고려하여 핵물질 및 기타 방사성물질의 기원 또는 출처를 파악하는데 사용되는 표지물질을 제시하였다. 국내에서는 경수로 및 중수로를 운용하고 있으며 각각 핵연료로 농축 우라늄과 천연우라늄을 사용한다. 국내 선행핵연료주기에서 표지물질은 중수로형 원자력발전소의 연료인 천연우라늄과 우라늄 농축과정의 UF6으로 생각할 수 있다. 국내 후행핵연료주기는 재처리 과정을 제외된 비순환 주기를 채택하고 있어 주요 표지물질은 사용후핵연료가 된다. 해당 물질들에 대해 IAEA 문헌에서 권고하는 표지물질의 시그니처 중요도를 판단하고 조사 항목을 제시하였다. 향후 핵감식에서 핵물질 관리에 대한 무결성 입증과 국가 핵감식 역량을 높이기 위한 핵감식 라이브러리 구축을 위해 국내 원자력시설과 핵연료주기를 고려한 표지물질을 파악하고 해당물질 별 시그니처 데이터를 확보해야 할 것으로 생각된다.
핵연료 운반용 실린더의 재사용을 위한 용기세척공장의 제염공정에 대한 성능을 평가하기 위하여 ${Na_2}{CO_3}\;+\;{H_2}{O_2}$ 혼합용액의 조합을 약간 달리한 2회의 시험을 실행하였다. 각 시험은 모두 일련의 5 단계에 걸쳐 실시되었다. 우라늄 제염의 주 화학종은 ${Na_4}{UO_2}(CO_3)_3$로 식별되었다. 그리고 첫 단계에서의 세척 액은 물이었으며, 이 단계에서 50% 이상의 우라늄이 제염되었다. 그 이후로는 단계가 더해 갈수록 우라늄의 제염양은 지수함수적으로 감소하는 경향을 나타내었으며, 화학양론적으로 제거된 우라늄에 비하여 투여된 ${Na_2}{CO_3}$의 양은 과다함을 나타내었다. 이러한 결과들에 의하면, 공정최적화를 통하여 ${Na_2}{CO_3}$의 투여량 감축, 세척폐액의 감량, 제염단계 축소 등을 꾀할 수 있을 것으로 판단된다.
Boyarintsev, Alexander V.;Stepanov, Sergei I.;Chekmarev, Alexander M.;Tsivadze, Aslan Yu.
Nuclear Engineering and Technology
/
제52권1호
/
pp.109-114
/
2020
This work presents the results of laboratory scale tests of the CARBOFLUOREX (CARBOnate FLUORide EXtraction) process - a novel technology for the recovery of U and Pu from the solid fluorides residue (fluorination ash) of Fluoride Volatility Method (FVM) reprocessing of spent nuclear fuel (SNF). To study the oxidative leaching of U from the fluorination ash (FA) by Na2CO3 or Na2CO3-H2O2 solutions followed by solvent extraction by methyltrioctylammonium carbonate in toluene and purification of U from the fission products (FPs) impurities we used a surrogate of FA consisting of UF4 or UO2F2, and FPs fluorides with stable isotopes of Ce, Zr, Sr, Ba, Cs, Fe, Cr, Ni, La, Nd, Pr, Sm. Purification factors of U from impurities at the solvent extraction refining stage reached the values of 104-105, and up to 106 upon the completion of the processing cycle. Obtained results showed a high efficiency of the CARBOFLUOREX process for recovery and separating of U from FPs contained in FA, which allows completing of the FVM cycle with recovery of U and Pu from hardly processed FA.
본 연구는 통상적으로 충밀도 섬유판 제조에 사용되고있는 요소수지를 페놀수지로 대체함으로써 그 장단점을 찾아 보기 위해 실행되었다. 페놀수지을 이용해 제조한 중밀도 섬유판의 성능은 표준 요건을 충족시켰으며 높은 내구성을 보였다. 아울러 24 시간 냉수 침적후 두께팽창은 2 퍼센트 이하로 낮게 나타났다. 요소수지를 페놀수지로 대체했을 경우 단점들은 비교적 높은 수지함량 (8% 섬유전건종량기준)과 긴 열압시간 (7 분)으로 판명되었다. 이러한 결과들은 페놀수지을 사용한 중밀도 섬유판제조시 열압공정의 최적화가 되어야함을 시사하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.