• 제목/요약/키워드: UDP-glucuronic acid

검색결과 9건 처리시간 0.025초

Biological Synthesis of Baicalein Derivatives Using Escherichia coli

  • Han, Da Hye;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1918-1923
    • /
    • 2016
  • Two baicalein derivatives, baicalin and oroxylin A, were synthesized in this study. These derivatives exhibit diverse biological activities, such as anxiolytic and anticancer activities as well as memory enhancement. In order to synthesize baicalin from aglycon baicalein using Escherichia coli, we utilized a glycosyltransferase that regioselectively transfers glucuronic acid from UDP-glucuronic acid to the 7-hydroxy group of baicalein. To increase baicalin productivity, an araA deletion E. coli mutant, which accumulates UDP-glucuronic acid, was used, and ugd, which converts UDP-glucose to UDP-glucuronic acid, was overexpressed. Using these strategies, approximately $720.3{\mu}M$ baicalin was synthesized from $1,000{\mu}M$ baicalein. Oroxylin A was then synthesized from baicalein. Two O-methyltransferases (OMTs), ROMT-15 and POMT-9, were tested to examine the production of oroxylin A from baicalein. E. coli harboring ROMT-15 and E. coli harboring POMT-9 produced reaction products that had different retention times, indicating that they are methylated at different positions; the structure of the reaction product from POMT-9 was consistent with oroxylin A, whereas that from ROMT-15 was 7-O-methyl baicalein. Using E. coli harboring POMT-9, approximately 50.3 mg/l of oroxylin A ($177{\mu}M$) was synthesized from 54 mg/l baicalein ($200{\mu}M$).

Effect of Scoparone on the Hepatic Microsomal UDPglucuronyltransferase Activity in Mice

  • Huh, Keun;Lee, Sang-Il;Park, Jong-Min
    • Archives of Pharmacal Research
    • /
    • 제10권3호
    • /
    • pp.165-168
    • /
    • 1987
  • The effect of scoparone on UDP glucuronyltransfearase in mouse hepatic microsomes was studied. After transment with scoparone, hepatic microsomal UDP glucuronyltransferase activity was increased with dose-dependent manner as compared to control. The V$_max$ value (control = 23.2 n moles/mg protein/min, scoparone = 31.2 n moles/ mg protein /min) without affecting the $K_m$ value (414 $\mu$M) for p-nitrophenol was increased by the scoparone treatment, and the pattern of kinetic studies for UDP-glucuronic acid was also similar to those of p-nitrophenol. Whereas, the hepatic microsomal UDP glucuronyl-transferase was not changed by the addition of scoparone in vitro. The results obtained suggest that the characteristics of increase in the enzyme activity may include induction of enzyme proteins.

  • PDF

Stepwise Synthesis of Quercetin Bisglycosides Using Engineered Escherichia coli

  • Choi, Gyu Sik;Kim, Hyeon Jeong;Kim, Eun Ji;Lee, Su Jin;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1859-1864
    • /
    • 2018
  • Synthesis of flavonoid glycoside is difficult due to diverse hydroxy groups in flavonoids and sugars. As such, enzymatic synthesis or biotransformation is an approach to solve this problem. In this report, we used stepwise biotransformation to synthesize two quercetin bisglycosides (quercetin 3-O-glucuronic acid 7-O-rhamnoside [Q-GR] and quercetin 3-O-arabinose 7-O-rhamnoside [Q-AR]) because quercetin O-rhamnosides contain antiviral activity. Two sequential enzymatic reactions were required to synthesize these flavonoid glycosides. We first synthesized quercetin 3-O-glucuronic acid [Q-G], and quercetin 3-O-arabinose [Q-A] from quercetin using E. coli harboring specific uridine diphopsphate glycosyltransferase (UGT) and genes for UDP-glucuronic acid and UDP-arabinose, respectively. With each quercetin 3-O-glycoside, rhamnosylation using E. coli harboring UGT and the gene for UDP-rhamnose was conducted. This approach resulted in the production of 44.8 mg/l Q-GR and 45.1 mg/l Q-AR. This stepwise synthesis could be applicable to synthesize various natural product derivatives in case that the final yield of product was low due to the multistep reaction in one cell or when sequential synthesis is necessary in order to reduce the synthesis of byproducts.

Effect of Glycyrrhizae Radix on the Glucuronidation in Rat Liver

  • Moon, Aree;Lee, Mi-Kyung;Kim, Seung-Hee;Kim, Young-Choong;Lee, Song-Deuk
    • Archives of Pharmacal Research
    • /
    • 제18권5호
    • /
    • pp.320-324
    • /
    • 1995
  • Pretreatment of Glycyrrhizae Radix(GR) to male Sprague-Dawley rats was demonstrated to increase excretion of acetaminophen-glucuronide ocnjugate when bile nad urine were assayed after administration of acetaminophen. In order to study the effect of GR on the glucuronidation in rats, we examined enzymatic activities of hepatic UDP-glucuronosyl-transferases (UDP-GT1 and UDP-GT2) and intracellular concentrations of hepatic UDP-glucuronic acid (UDP-GA), upon the administration of GR (1 g/kg body weight, p.o.) or glycyrrhizin (23 mg/kg body weight, p.o.) a major component of GR, for 6 days. GR and glycyrrhizin caused increases in specific activities of UDP-GT2 111% and 96% respectively. Specific activity of UDP-GT1 was increased 25% by GR treatment whereas it was not significantly increased by glycyrrhizin. Concentrations of UDP-GA were increased 257% by GR and 484% by glycyrrhizin. These data indicate that GR activated glucuronidation and thus suggest the possibility that GR may influence detoxification of xenobiotics in rat liver.

  • PDF

Cloning and Characterization of UDP-glucose Dehydrogenase from Sphingomonas chungbukensis DJ77

  • Yoon, Moon-Young;Park, Hye-Yeon;Park, Hae-Chul;Park, Sung-Ha;Kim, Sung-Kun;Kim, Young-Chang;Shin, Mal-shik;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1547-1552
    • /
    • 2009
  • Sphingomonas chungbukensis DJ77 has the ability to produce large quantities of an extracellular polysaccharide that can be used as a gelling agent in the food and pharmaceutical industries. We identified, cloned and expressed the UDP-glucose dehydrogenase gene of S. chungbukensis DJ77, and characterized the resulting protein. The purified UDP-glucose dehydrogenase (UGDH), which catalyzes the reversible conversion of UDP-glucose to UDPglucuronic acid, formed a homodimer and the mass of the monomer was estimated to be 46 kDa. Kinetic analysis at the optimal pH of 8.5 indicated that the $K_m\;and\;V_{max}$ for UDP-glucose were 0.18 mM and 1.59 mM/min/mg, respectively. Inhibition assays showed that UDP-glucuronic acid strongly inhibits UGDH. Site-directed mutagenesis was performed on Gly9, Gly12 Thr127, Cys264, and Lys267. Substitutions of Cys264 with Ala and of Lys267 with Asp resulted in complete loss of enzymatic activity, suggesting that Cys264 and Lys267 are essential for the catalytic activity of UGDH.

Exploring the Nucleophilic N- and S-Glycosylation Capacity of Bacillus licheniformis YjiC Enzyme

  • Bashyal, Puspalata;Thapa, Samir Bahadur;Kim, Tae-Su;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권7호
    • /
    • pp.1092-1096
    • /
    • 2020
  • YjiC, a glycosyltransferase from Bacillus licheniformis, is a well-known versatile enzyme for glycosylation of diverse substrates. Although a number of O-glycosylated products have been produced using YjiC, no report has been updated for nucleophilic N-, S-, and C- glycosylation. Here, we report the additional functional capacity of YjiC for nucleophilic N- and S- glycosylation using a broad substrate spectrum including UDP-α-D-glucose, UDP-N-acetyl glucosamine, UDP-N-acetylgalactosamine, UDP-α-D-glucuronic acid, TDP-α-L-rhamnose, TDP-α-D-viosamine, and GDP-α-L-fucose as donor and various amine and thiol groups containing natural products as acceptor substrates. The results revealed YjiC as a promiscuous enzyme for conjugating diverse sugars at amine and thiol functional groups of small molecules applicable for generating glycofunctionalized chemical diversity libraries. The glycosylated products were analyzed using HPLC and LC/MS and compared with previous reports.

Metabolic Engineering of Escherichia coli for the Biological Synthesis of 7-O-Xylosyl Naringenin

  • Simkhada, Dinesh;Kim, EuiMin;Lee, Hei Chan;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.397-401
    • /
    • 2009
  • Flavonoids are a group of polyphenolic compounds that have been recognized as important due to their physiological and pharmacological roles and their health benefits. Glycosylation of flavonoids has a wide range of effects on flavonoid solubility, stability, and bioavailability. We previously generated the E. coli BL21 (DE3) ${\Delta}pgi$ host by deleting the glucose-phosphate isomerase (Pgi) gene in E. coli BL21 (DE3). This host was further engineered for whole-cell biotransformation by integration of galU from E. coli K12, and expression of calS8 (UDP-glucose dehydrogenase) and calS9 (UDP-glucuronic acid decarboxylase) from Micromonospora echinospora spp. calichensis and arGt-4 (7-O-glycosyltransferase) from Arabidopsis thaliana to form E. coli (US89Gt-4), which is expected to produce glycosylated flavonoids. To test the designed system, the engineered host was fed with naringenin as a substrate, and naringenin 7-O-xyloside, a glycosylated naringenin product, was detected. Product was verified by HPLC-LC/MS and ESI-MS/MS analyses. The reconstructed host can be applied for the production of various classes of glycosylated flavonoids.

Identfication of Phase I and Phase II Metabolites of Hesperetin in Rat Liver Microsomes by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry

  • Kim, Un-Yong;Han, Sang-Beom;Kwon, Oh-Seung;Yoo, Hye-Hyun
    • Mass Spectrometry Letters
    • /
    • 제2권1호
    • /
    • pp.20-23
    • /
    • 2011
  • The purpose of this study is to investigate the in vitro metabolism of hesperetin, a bioflavonoid. Hesperetin was incubated with rat liver microsomes in the presence of NADPH and UDP-glucuronic acid for 30 min. The reaction mixture was analyzed by liquid chromatography-ion trap mass spectrometer and the chemical structures of hesperetin metabolites were characterzed based on their MS/MS spectra. As a result, a total of five metabolites were detected in rat liver microsomes. The metabolites were identified as a de-methylated metabolite (eriodictyol), two hesperetin glucuronides, and two eriodictyol glucuronides.

An Annealing Control Primer (ACP) System Used for the Isolation and Identification of Copper-Induced Genes in Alfalfa Leaves

  • Lee, Ki-Won;Lee, Sang-Hoon;Kim, Ki-Yong;Ji, Hee Chung;Park, Hyung Soo;Hwang, Tae Young;Choi, Gi Jun;Rahman, Md. Atikur
    • 한국초지조사료학회지
    • /
    • 제36권3호
    • /
    • pp.237-242
    • /
    • 2016
  • Copper (Cu) is a necessary microelement for plants. However, high concentrations of Cu are toxic to plants that change the regulation of several stress-induced proteins. In this study, an annealing control primer (ACP) based approach was used to identify differentially expressed Cu-induced genes in alfalfa leaves. Two-week-old alfalfa plants (Medicago sativa L.) were exposed to Cu for 6 h. Total RNAs were isolated from treated and control leaves followed by ACP-based PCR technique. Using GeneFishing ACPs, we obtained several genes those expression levels were induced by Cu. Finally, we identified several genes including UDP-glucuronic acid decarboxylase, transmembrane protein, small heat shock protein, C-type cytochrome biogenesis protein, mitochondrial 2-oxoglutarate, and trans-2,3-enoyl-CoA reductase in alfalfa leaves. These identified genes have putative functions in cellular processes such as cell wall structural rearrangements, transduction, stress tolerance, heme transport, carbon and nitrogen assimilation, and lipid biosynthesis. Response of Cu-induced genes and their identification in alfalfa would be useful for molecular breeding to improve alfalfa with tolerance to heavy metals.