• 제목/요약/키워드: UAE Nuclear Power Plant

검색결과 9건 처리시간 0.02초

UAE 원전 발전기 제어시스템 시험기술 현장적용 (Evaluation Technique for Control System of Barakah Nuclear Power Plant)

  • 김경열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.69-72
    • /
    • 2021
  • 한전에서 운영중인 요르단 알카트라나발전소에서 발전기 고정자권선 전계완화 절연물의 손상되었다. Overlap 부위의 정비를 수행한 결과를 분석하였고, 손상원인을 규명하여 불시정지로 인한 손실을 최소화하기 위한 단기대책과 장기적인 대책을 제시하였다.

Analysis of Korea's nuclear R&D priorities based on private Sector's domestic demand using AHP

  • Lee, Yunbaek;Son, Seungwook;Park, Heejun
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2660-2666
    • /
    • 2020
  • Korea successfully achieved energy independence in the shortest period of time from being the poorest country in terms of energy 50 years ago through steady development of nuclear technology. In the past, the nuclear industry has been driven through government-centered policy development, public institution-based research, and industrial facility and infrastructure construction. Consequently, South Korea became a nuclear energy powerhouse exporting nuclear power plants to the UAE, surpassing the level of domestic technological independence. However, in recent years, the nuclear industry in Korea has experienced a decline in new plant construction since the Fukushima accident in Japan, which caused changes in public perspectives regarding nuclear power plant operation, more stringent safety standards on the operation of nuclear power plants, and a shift in governmental energy policy. These changes are expected to change the domestic nuclear industry ecosystem. Therefore, in this study, we investigate the priority of technology development investment from the perspective of experts in private nuclear power companies, shifting the focus from government-led nuclear R&D policies. To establish a direction in nuclear technology development, a survey was conducted by applying an analytic hierarchy analysis to experts who have worked in nuclear power plants for more than 15 years. The analysis items of focus were the 3 attributes of strategic importance, urgency, and business feasibility of four major fields related to nuclear energy: nuclear safety, decommissioning, radioactive waste management, and strengthening industrial competitiveness.

HIGH COOLING WATER TEMPERATURE EFFECTS ON DESIGN AND OPERATIONAL SAFETY OF NPPS IN THE GULF REGION

  • Kim, Byung Koo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.961-968
    • /
    • 2013
  • The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP) are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia), and a much larger one at Barakah (4X1,400 MWe PWR from Korea). Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

원자력발전소 Work Breakdown Structure 개발 (Development of Work Breakdown Structure for Nuclear Power Plant)

  • 조영혁;양명덕
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.52-53
    • /
    • 2014
  • The Work Breakdown Structure (WBS) is a primary tool which provides a framework that defines clear scope of all deliverables throughout the project life cycle. Once the WBS is established in projects, it should allow project team members to measure and manage work performances by the WBS; further, it should provide a reference point when any work scope needs to be redefined. Based on the project information in the Progress and Performance Measurement System (PPMS) of UAE's Barakha Nuclear Power Plant (BNPP) projects, an attempt was made to develop a new WBS which provides hierarchical and systematical decomposition of the total work scope of NPP construction projects while avoiding from the preexistence concept in Korean NPP projects that the WBS is a combination of Physical Breakdown Structure (PBS) and Functional Breakdown Structure (FBS). The unique features of the new WBS are as follows: (1) defined the definition of each level of the WBS, (2) subdivided the WBS into 5 hierarchical levels, and (3) adopted globally used general coding structure. The new WBS provides a basic hierarchical structure for the project scope and can be used as a basic tool for schedule control, performance measurement, project status monitoring, and communication among project participants. In addition, by putting the Work Package (WP) under the WBS, the Earned Value Management System (EVMS) per WP can be utilized for the project.

  • PDF

방사성폐기물 해상운송과 관련된 교육과정 개발의 필요성에 대한 연구 (A Study on the necessity of development for the Curriculum related to Marine Transportation of Radioactive waste)

  • 김진권;홍정혁;김원욱;김종관;이창희
    • 수산해양교육연구
    • /
    • 제29권3호
    • /
    • pp.920-931
    • /
    • 2017
  • Since the export of Korean-type APR 1400 in 2009 to the UAE, Korea has been achieved management performance, quality inspections, training, nuclear fuel exports for the nuclear power plant. Despite this apparent growth, there are lacking of the research on the marine transportation of radioactive waste. And the terrible accident at the Japan nuclear power plant in 2011 has caused another reconsideration such as emergency response training and plan, reinforcement of safety regulation. According to the Korean government aims to rebuild the appropriate regulation, training, education that is necessary in order to ensure the safety of marine transportation of radioactive waste. Therefore, this study analyzed the various problems identified by the team of experts for the radioactive waste and marine field, the investigation of relevant legal basis, the need for emergency response training for the person in charge of radioactive waste and suggested the simulation-based interactive curriculum during the process of safety verification related to the marine transport of mid- and low-level radioactive waste generated at the Yeon-ggwang nuclear power(Hanbit) plant in 2015.

ASSESSMENT OF WIND CHARACTERISTICS AND ATMOSPHERIC DISPERSION MODELING OF 137Cs ON THE BARAKAH NPP AREA IN THE UAE

  • Lee, Jong Kuk;Kim, Jea Chul;Lee, Kun Jai;Belorid, Miloslav;Beeley, Philip A.;Yun, Jong-Il
    • Nuclear Engineering and Technology
    • /
    • 제46권4호
    • /
    • pp.557-568
    • /
    • 2014
  • This paper presents the results of an analysis of wind characteristics and atmosphere dispersion modeling that are based on computational simulation and part of a preliminary study evaluating environmental radiation monitoring system (ERMS) positions within the Barakah nuclear power plant (BNPP). The return period of extreme wind speed was estimated using the Weibull distribution over the life time of the BNPP. In the annual meteorological modeling, the winds from the north and west accounted for more than 90 % of the wind directions. Seasonal effects were not represented. However, a discrepancy in the tendency between daytime and nighttime was observed. Six variations of cesium-137 ($^{137}Cs$) dispersion test were simulated under severe accident condition. The $^{137}Cs$ dispersion was strongly influenced by the direction and speed of the main wind. A virtual receptor was set and calculated for observation of the $^{137}Cs$ movement and accumulation. The results of the surface roughness effect demonstrated that the deposition of $^{137}Cs$ was affected by surface condition. The results of these studies offer useful information for developing environmental radiation monitoring systems (ERMSs) for the BNPP and can be used to assess the environmental effects of new nuclear power plant.

FA를 혼입한 콘크리트의 온도 영향을 고려한 강도 및 염화물 확산성 평가 (Evaluation of Strength and Chloride Diffusion in Concrete with FA Considering Temperature Effect)

  • 양근혁;권성준
    • 한국건설순환자원학회논문집
    • /
    • 제11권1호
    • /
    • pp.62-69
    • /
    • 2023
  • UAE 지역에 시공되는 원전구조물의 노출환경에서 대기 중의 높은 황산염 이온 및 해안의 높은 염화물 이온에 의한 열화를 고려할 필요가 있다. 본 연구에서는 연평균 38 ℃ 이상의 높은 온도에 따른 확산성과 강도의 영향을 평가하기 위해 두가지 강도 등급(40 MPa 및 27 MPa) 및 두 가지 양생/확산 온도 조건(20 ℃ 및 50 ℃)을 고려하였다. 초기 양생 온도가 높은 경우, 7일 전 초기재령에서는 압축강도가 고온 양생에서 크게 발현하였으나, 28일 재령에서는 20 ℃ 양생 온도 조건에서 압축강도가 약간 증가하였다. 염화물 확산의 경우, 강도 평가결과와 다르게 28일 재령에서 초기 양생 온도가 높은 경우, 40 MPa 및 27 MPa 에서 모두 확산계수가 감소하였다. 91일 재령의 경우, 온도의 증가에 따른 확산성의 증가와 재령 효과에 의한 확산성의 감소가 동시에 발생하였다. 재령 28일에 20 ℃로 양생 및 확산 실험을 한 결과에 비하여, 재령 91일에 50 ℃로 양생 및 확산 실험을 한 경우, 재령의 증가에 따라 40 MPa에서는 76.2 % 수준으로, 27 MPa 에서는 85.4 % 수준으로 확산계수가 감소하였다.

해외건설 프로젝트의 성공적 수행을 위한 위험요소 및 대처방안에 대한 연구 - 해외건설 사례분석을 포함하여 - (A Study on Risk Analysis and Relevant Measures for the Successful Performance in Overseas Construction Projects - Including Case Analysis on A Overseas Construction Project -)

  • 김상만
    • 무역상무연구
    • /
    • 제50권
    • /
    • pp.215-250
    • /
    • 2011
  • Korean won overseas construction projects worth 71.6 billion US Dollars in 2010, which exceeded that of 2009 by 45.6%. An overseas construction project is a transaction of large scale, long term project, many parties participating, deferred payment, and of high-technology. It contributes to foreign currency earning, and also leads the nation's export restructuring work towards high value-added one. There are various kinds of risks towards the relevant parties respectively, which are key elements in successfully performing the overseas construction project. There are completion risk, financing risk, operating risk, revenue risk etc, in an employer's place. A contractor may be confronted with payment risk, issuance risk of performance bond, financing risk, performance risk of sub-contractors, and exchange rate risk. In lenders place there are repayment risk, completion risk, and political risk in the host country. In order to mitigate risks, the parties shall take relevant measures or require relevant securities. A contractor needs to evaluate the credibility of an employer in respect of payment risk, and can also request export insurance cover by the Korea Trade Insurance Corporation(the former 'Korea Export Insurance Corporation"). An employer can require a contractor to provide performance bond in respect of completion risk, and employ a well-known first class bank as a mandated arranger to arrange financing with regard to completion risk. Lenders needs to evaluate the credibility of an employer and accomplish feasibility study of the project. Lenders can request insurance cover from export credit agency. Once the parties assess the respective risks and obtain relevant securities, the project will be successfully completed. The success of the project will be sure to bring the parties involved enormous profits and another opportunity to participate in overseas construction project afterwards.

  • PDF

원자력 추진 잠수함의 특성과 농축우라늄 사용 (The characteristics of nuclear powered submarine and the use of enriched uranium)

  • 장준섭
    • Strategy21
    • /
    • 통권41호
    • /
    • pp.261-293
    • /
    • 2017
  • Nuclear power is a way of attaining an enormous amount of energy with relatively small amount of resources and after it has been introduced to the submarine since 1954, there are approximately 150 of nuclear powered submarine currently on a mission around the world. This is due to the maneuverability, mountability and covertness of nuclear submarines. However, there are other tasks, not only the high level of nuclear technology that are needed to be dealt with in order to construct nuclear powered submarine. The biggest task of all is to secure the enriched uranium. Accordingly, this research is about the way of enriching and securing the nuclear fuel that are used in the nuclear submarine with the characteristics, merits and demerits of the nuclear submarine. Due to the fact that the pressurized water reactor in South Korea is the reactor that was originally built for the development of nuclear powered submarine, many parts is designed to be suitable for the submarine propulsion. However, in order to apply this to submarine it is needed to consider additional requests such as the position of reactor, accident-coping system, radioactive covering, reactor output adjustment and ship's pitch and roll in order to apply this to submarine. Nuclear submarines have much higher speed based on the powerful propulsion in comparison with diesel-electric submarine and also have bigger loading area. Besides, there is no need to snorkel and they also have advantages in covertness with the multi-noise proof system. The nuclear technology in South Korea has seen the dramatic development since 1962 and in 1998 reached to the level that we have succeeded in the localization of nuclear plant and exported the world-class one-piece small-sized reactor (SMART) to UAE. To operate these reactors, we import the whole quantity of low-enriched uranium and having our own uranium enrich facility is not probable because of the budget and international regulations. With the ROK/US nuclear agreement revised on 2015 November, the enrichment of uranium that are available without special permission has changed up to 20%. According to the assumption that we use the 20% enrichment of Uranium on U.S. virginia class submarine, it is necessary to change the fuel after 11 years and it will cause additional cost of 1 billion dollars. But the replace period by the uranium's enrichment rate is not fixed so that it is possible to change according to the design of reactor. Therefore, I would like to make a suggestion on two types of design concepts of nuclear submarine that can be operated for 30 years without nuclear fuel change by using the 20% enriched uranium from ONNp.First of all, it is possible by increasing the size of reactor by 3 times and it results in the 1,000t increase of the weight. And secondly, it is by designing the one piece reactor to insert devices such as steam turbine, condenser into the inside of nuclear core like the Rubis class submarines of France.