• 제목/요약/키워드: U73122

검색결과 62건 처리시간 0.024초

Increase of Membrane Potential by Ginsenosides in Prostate Cancer and Glioma cells

  • Lee, Yun-Kyung;Im, Young-Jin;Kim, Yu-Lee;Sacket Santosh J.;Lim, Sung-Mee;Kim, Kye-Ok;Kim, Hyo-Lim;Ko, Sung-Ryong;Lm, Dong-Soon
    • Journal of Ginseng Research
    • /
    • 제30권2호
    • /
    • pp.70-77
    • /
    • 2006
  • Ginseng has an anti-cancer effect in several cancer models. As a mechanism study of ginsenoside-induced growth inhibition in cancer cells, we measured change of membrane potential in prostate cancer and glioma cells by ginsenosides, active constituents of ginseng. Membrane potential was estimated by measuring fluorescence change of DiBAC-Ioaded cells. Among 11 ginsenosides tested, ginsenosides $Rb_2$, $Rg_3$, and $Rh_2$ increased significantly and robustly the membrane potential in a concentration-dependent manner in prostate cancer and glioma cells. Ginsenosides Rc, Ro, and $Rb_1$ slightly increased membrane potential. The ginsenoside-induced membrane potential increase was not affected by treatment with pertussis toxin or U73122. The ginsenoside-induced membrane potential increase was not diminished in $Na^+$-free or $HCO_3^-$-free media. Furthermore, the ginsenoside-induced increase of membrane potential was not changed by EIPA (5-(N-ethyl-N-isopropyl)-amiloride), SITS (4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid), and omeprazole. In summary, ginsenosides $Rb_2$, $Rg_3$, and $Rh_2$ increased membrane potential in prostate cancer and glioma cells in a GPCR-independent and $Na^+$ independent manner.

생쥐 초기 2-세포 배의 세포내 칼슘 증가에 미치는 Acetylcholine의 영향 (The Effect of Acetylcholine on the Intracellular $Ca^{2+}$ Increase of the Mouse Early 2-cell Embryos)

  • 윤숙영;강다원;배인하
    • 한국수정란이식학회지
    • /
    • 제20권3호
    • /
    • pp.191-200
    • /
    • 2005
  • 체외 배양 과정 중에 나타나는 생쥐 초기 2-세포 배의 "in vitro 2-cell block" 현상은 세포내 $Ca^{2+}$ 농도 변화와 밀접한 관련이 있다. 다양한 종류의 세포에서 acetylcholine은 세포막에 존재하는 muscarnic acetylcholine receptor를 통해 세포내 $Ca^{2+}$ 농도 증가를 유도한다. 본 실험에서는 생쥐 "in vitro 2-cell block" 현상에 있어서 ACh의 영향을 알아보기 위해 세포 내 $Ca^{2+}$ 농도 조절 물질을 처리한 후, 공초점 현미경을 이용하여 세포 내 $Ca^{2+}$ 농도 변화를 기록하였다. ACh은 세포 내에서 농도 의존적으로 $Ca^{2+}$ 농도 증가를 유도하며, "in Vitro 2-cell block" 현상을 극복하여 포배기로 발생을 유도하였다. ACh에 의한 $Ca^{2+}$ 농도 증가가 세포막에 존재하는 ACh receptor를 경유하여 나타나는 반응인지를 알아보기 위해 ACh receptor의 저해제인 atropine을 전처리한 결과, ACh에 의한 $Ca^{2+}$ 농도 증가가 완전히 저해되었다. 초기 2-세포 배에서 ACh이 결합하는 receptor의 종류를 확인하기 위하여 carbachol과 nicotin tartrate를 처리 하였다. Nicotinic AChR의 agonist인 nicotine tartrate 1 mM은 세포내 $Ca^{2+}$ 농도 증가를 보이지 않았다. 따라서 초기 2-세포 배의 세포막에는 muscarnic AChR가 기능적으로 작용함을 알 수 있다. ACh에 의한 세포내 $Ca^{2+}$ 농도 증가가 $Ca^{2+}$이 제거된 배양액에서도 나타나는 것으로 보아 ACh에 의한 세포내 $Ca^{2+}$ 변화는 주로 소포체와 같은 세포내 $Ca^{2+}$ 저장고로부터 분비됨을 알 수 있었다. 이러한 세포내 $Ca^{2+}$ 저장고로부터의 $Ca^{2+}$ 분비가 어떤 신호전달체계를 통해 나타나는 지를 조사하였다. 세포막의 PLC 저해제인 U73122를 전처리한 배는 ACh에 의한 $Ca^{2+}$ 농도 증가가 나타나지 않았으며, 세포 내 $Ca^{2+}$ 통로인 IP3R와 RyR의 저해제인 xestospongin과 heparin 혹은 dantrolene을 전처리한 결과 dantrolene에 의해 세포내 $Ca^{2+}$ 농도 증가가 억제되었다. 그리고 세포내 반복적인 $Ca^{2+}$ 농도 증가에 의해 활성도가 변화는 CaMKII의 작용을 확인하기 위하여 Ca MKII의 저해제인 KN-93을 전처리한 결과 $Ca^{2+}$ 농도 증가가 억제되는 것을 확인하였다. 이상의 결과로부터 ACh은 생쥐 초기 2-세포 배에서 ryano-dine receptor를 통하여 세포내 $Ca^{2+}$ 저장고로부터 $Ca^{2+}$ 분비를 유도하며, CaM KII에 의해서도 영향을 받는 것으로 보여진다. 생쥐 초기 2-세포 배에서 "in vitro 2-cell block"의 극복은 ACh에 의해 유도된 신호전달체계를 통해 세포내에 증가하는 $Ca^{2+}$ 농도 및 이에 따른 세포내 대사 작용의 활성화에 의하여 나타나는 것으로 생각된다.

Prostaglandin F2α 의존적 phospholipase C-β3 활성화에 의한 혈관평활근세포의 병태생리 조절 연구 (Pathophysiological Regulation of Vascular Smooth Muscle Cells by Prostaglandin F2α-dependent Activation of Phospholipase C-β3)

  • 강기웅;오준영;이윤한;이혜선;진서연;배순식
    • 생명과학회지
    • /
    • 제28권12호
    • /
    • pp.1516-1522
    • /
    • 2018
  • 죽상동맥경화는 대동맥의 만성염증에 의해 주로 발병되는 폐쇄동맥질환이다. 혈관평활근세포의 증식 및 이동은 죽상동맥경화 발병의 주된 병리적 반응이다. 본 연구에서는 죽상동맥경화 발병기전을 유도하는 표적 염증반응 물질의 탐색 및 이들에 의한 신호전달 기전을 연구하였다. 혈관평활근세포의 증식 및 이동은 prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$)에 의해 의미 있게 증가하였으나 tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$)에 의해서는 증가하지 않았다. Prostacyclin $I_2$ ($PGI_2$)는 혈관평활근세포의 증식은 촉진시켰으나 이동은 오히려 억제하였다. prostaglandin $D_2$ ($PGD_2$) 및 prostaglandin $E_2$ ($PGE_2$)는 혈관평활근세포의 증식을 촉진시켰으나 이동에는 영향을 미치지 않았다. $PGF_{2{\alpha}}$는 용량 의존적으로 혈관평활근세포의 증식 및 이동을 촉진시켰고 EC50는 약 $0.1{\mu}M$로 관찰되었다. 혈관평활근세포에서 phospholipase $C-{\beta}3$ ($PLC-{\beta}3$) 아형의 발현은 매우 높았으나 $PLC-{\beta}1$, $PLC-{\beta}2$, 및 $PLC-{\beta}4$의 발현은 관찰되지 않았다. U73122 처리를 통해 PLC의 활성을 억제하면 $PGF_{2{\alpha}}$에 의한 혈관평활근세포의 이동이 억제되었다. 또한 $PLC-{\beta}3$의 발현을 억제하면 $PGF_{2{\alpha}}$에 의한 혈관평활근세포의 증식 및 이동이 억제되었다. 이러한 결과들을 바탕으로 $PGF_{2{\alpha}}$ 는 혈관평활근세포의 증식 및 이동에 중요한 역할을 수행하고, 여기에는 $PLC-{\beta}3$가 필수적인 역할을 담당하고 있음을 제안한다.

사람 단핵구에서 결핵균에 의해 유도되는 CCL3 및 CCL4 발현에 대한 Phospholipase-Protein Kinase C-MEK-ERK 경로의 역할 분석 (The Phospholipase-Protein Kinase C-MEK-ERK Pathway is Essential in Mycobacteria-induced CCL3 and CCL4 Expression in Human Monocytes)

  • 양철수;송창화;정샛별;이길수;김수영;이지숙;신아름;오재희;권유미;김화중;박정규;백태현;조은경
    • IMMUNE NETWORK
    • /
    • 제5권4호
    • /
    • pp.237-246
    • /
    • 2005
  • Background: Little information is available on the identification and characterization of the upstream regulators of the signal transduction cascades for Mycobacterium tuberculosis (M. tbc)-induced ERK 1/2 activation and chemokine expression. We investigated the signaling mechanisms involved in expression of CCL3 /MIP-1 and CCL4/MIP-1 in human primary monocytes infected with M. tbc. Methods: MAP kinase phosphorylation was determined using western blot analysis with specific primary antibodies (ERK 1/2, and phospho-ERK1/2), and the upstream signaling pathways were further investigated using specific inhibitors. Results: An avirulent strain, M. tbc H37Ra, induced greater and more sustained ERK 1/2 phosphorylation, and higher CCL3 and CCL4 production, than did M. tbc H37Rv. Specific inhibitors for mitogen-activated protein kinase (MAPK) kinase (MEK; U0126 and PD98059) significantly inhibited the expression of CCL3 and CCL4 in human monocytes. Mycobactetia-mediated expression of CCL3 and CCL4 was not inhibited by the Ras inhibitor manumycin A or the Raf-1 inhibitor GW 5074. On the other hand, phospholipase C (PLC) inhibitor (U73122) and protein kinase C (PKC)specific inhibitors ($G\ddot{o}6976$ and Ro31-8220) significantly reduced M. tbc-induced activation of ERK 1/2 and chemokine synthesis. Conclusion: These results are the first to demonstrate that the PLC-PKC-MEK-ERK, not the Ras-Raf-MEK-ERK, pathway is the major signaling pathway inducing M. tbc-mediated CCL3 and CCL4 expression in human primary monocytes.

Acidic pH-activated $Cl^-$ Current and Intracellular $Ca^{2+}$ Response in Human Keratinocytes

  • Park, Su-Jung;Choi, Won-Woo;Kwon, Oh-Sang;Chung, Jin-Ho;Eun, Hee-Chul;Earm, Young-E;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권4호
    • /
    • pp.177-183
    • /
    • 2008
  • The layers of keratinocytes form an acid mantle on the surface of the skin. Herein, we investigated the effects of acidic pH on the membrane current and $[Ca^{2+}]_c$ of human primary keratinocytes from foreskins and human keratinocyte cell line (HaCaT). Acidic extracellular pH ($pH_e{\leq}5.5$) activated outwardly rectifying $Cl^-$ current ($I_{Cl,pH}$) with slow kinetics of voltage-dependent activation. $I_{Cl,pH}$ was potently inhibited by an anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS, 73.5% inhibition at 1${\mu}$M). $I_{Cl,pH}$ became more sensitive to $pH_e$ by raising temperature from $24^{circ}C$ to $37^{circ}C$. HaCaT cells also expressed $Ca^{2+}$-activated $Cl^-$ current ($I_{Cl,Ca}$), and the amplitude of $I_{Cl,Ca}$ was increased by relatively weak acidic $pH_e$ (7.0 and 6.8). Interestingly, the acidic $pH_e$ (5.0) also induced a sharp increase in the intracellular [$Ca^{2+}$] (${\triangle}[Ca^{2+}]_{acid}$) of HaCaT cells. The ${\triangle}[Ca^{2+}]_{acid}$ was independent of extracellular $Ca^{2+}$, and was abolished by the pretreatment with PLC inhibitor, U73122. In primary human keratinocytes, 5 out of 28 tested cells showed ${\triangle}[Ca^{2+}]_{acid}$. In summary, we found $I_{Cl,pH}$ and ${\triangle}[Ca^{2+}]_{acid}$ in human keratinocytes, and these ionic signals might have implication in pathophysiological responses and differentiation of epidermal keratinocytes.

Calcium Signaling of Dioleoyl Phosphatidic Acid via Endogenous LPA Receptors: A Study Using HCT116 and HT29 Human Colon Cancer Cell Lines

  • Chang, Young-Ja;Kim, Hyo-Lim;Sacket, Santosh J.;Kim, Kye-Ok;Han, Mi-Jin;Jo, Ji-Yeong;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제15권3호
    • /
    • pp.150-155
    • /
    • 2007
  • In the present study, we have tested the effect of dioleoyl phosphatidic acid (PA) on intracellular $Ca_{2+}$ concentration ($[Ca^{2+}]_{i}$) in two human colon cancer cell lines (HCT116 and HT29). PA and lysophosphatidic acid (LPA), a bioactive lysolipid, increased $[Ca^{2+}]_{i}$ in both HCT116 and HT29 cell lines. Increases of $[Ca^{2+}]_{i}$ by PA and LPA were more robust in HCT116 cells than in HT29 cells. A specific inhibitor of phospholipase C (U73122), however, was not inhibitory to the cell responses. Pertussis toxin, a specific inhibitor of $G_{i/o}$ type G proteins, however, had an inhibitory effect on the responses except for an LPA-induced one in HT29 cells. Ruthenium red, an inhibitor of the ryanodine receptor, was not inhibitory on the responses, however, 2-APB, a specific inhibitor of inositol 1,4,5-trisphosphate receptor, completely inhibited both lipid-induced $Ca^{2+}$ increases in both cell types. Furthermore, by using Ki16425 and VPC32183, two structurally dissimilar specific antagonists for $LPA_{1}/LPA_{3}$ receptors, an involvement of endogenous LPA receptors in the $Ca^{2+}$ responses was observed. Ki16425 completely inhibited the responses but the susceptibility to VPC32183 was different to PA and LPA in the two cell types. Expression levels of five LPA receptors in the HCT116 and HT29 cells were also assessed. Our data support the notion that PA could increase $[Ca^{2+}]_{i}$ in human colon cancer cells, probably via endogenous LPA receptors, G proteins and $IP_{3}$ receptors, thereby suggesting a role of PA as an intercellular lipid mediator.

Activation of Lysophosphatidic Acid Receptor Is Coupled to Enhancement of $Ca^{2+}$ -Activated Potassium Channel Currents

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Hwang, Sung-Hee;Lee, Sang-Mok;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권3호
    • /
    • pp.223-228
    • /
    • 2013
  • The calcium-activated $K^+$ ($BK_{Ca}$) channel is one of the potassium-selective ion channels that are present in the nervous and vascular systems. $Ca^{2+}$ is the main regulator of $BK_{Ca}$ channel activation. The $BK_{Ca}$ channel contains two high affinity $Ca^{2+}$ binding sites, namely, regulators of $K^+$ conductance, RCK1 and the $Ca^{2+}$ bowl. Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is one of the neurolipids. LPA affects diverse cellular functions on many cell types through G protein-coupled LPA receptor subtypes. The activation of LPA receptors induces transient elevation of intracellular $Ca^{2+}$ levels through diverse G proteins such as $G{\alpha}_{q/11}$, $G{\alpha}_i$, $G{\alpha}_{12/13}$, and $G{\alpha}s$ and the related signal transduction pathway. In the present study, we examined LPA effects on $BK_{Ca}$ channel activity expressed in Xenopus oocytes, which are known to endogenously express the LPA receptor. Treatment with LPA induced a large outward current in a reversible and concentration-dependent manner. However, repeated treatment with LPA induced a rapid desensitization, and the LPA receptor antagonist Ki16425 blocked LPA action. LPA-mediated $BK_{Ca}$ channel activation was also attenuated by the PLC inhibitor U-73122, $IP_3$ inhibitor 2-APB, $Ca^{2+}$ chelator BAPTA, or PKC inhibitor calphostin. In addition, mutations in RCK1 and RCK2 also attenuated LPA-mediated $BK_{Ca}$ channel activation. The present study indicates that LPA-mediated activation of the $BK_{Ca}$ channel is achieved through the PLC, $IP_3$, $Ca^{2+}$, and PKC pathway and that LPA-mediated activation of the $BK_{Ca}$ channel could be one of the biological effects of LPA in the nervous and vascular systems.

Novel Glycolipoproteins from Ginseng

  • Pyo, Mi-Kyung;Choi, Sun-Hye;Hwang, Sung-Hee;Shin, Tae-Joon;Lee, Byung-Hwan;Lee, Sang-Mok;Lim, Yoong-Ho;Kim, Dong-Hyun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.92-103
    • /
    • 2011
  • Ginseng has been used as a general tonic agent to invigorate human body. In the present study, we isolated novel glycolipoproteins from ginseng that activate $Ca^{2+}$-activated $Cl^-$ channel (CaCC) in Xenopus oocytes and transiently increase intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) in mouse Ehrlich ascites tumor cells. We named the active ingredients as gintonin. Gintonin exists in at least six different forms. The native molecular weight of gintonin is about 67 kDa but its apparent molecular weight is about 13 kDa, indicating that gintonin might be a pentamer. Gintonin is rich in hydrophobic amino acids. Its main carbohydrates are glucose and glucosamine. Its lipid components are linoleic, palmitic, oleic, and stearic acids. Gintonin actions were blocked by U73122, a phospholipase C inhibitor, 2-aminoethxydiphenyl borate, an inositol 1,4,5-trisphosphate receptor antagonist, or bis (o-aminophenoxy) ethane-N,N,N0,N0-tetracetic acid acetoxymethyl ester, a membrane permeable $Ca^{2+}$ chelator. In the present study, we for the first time isolated novel gintonin and showed the signaling pathways on gintonin-mediated CaCC activations and transient increase of $[Ca^{2+}]_i$. Since $[Ca^{2+}]_i$ as a second messenger plays a pivotal role in the regulation of diverse $Ca^{2+}$-dependent intracellular signal pathways, gintonin-mediated regulations of $[Ca^{2+}]_i$ might contribute to biological actions of ginseng.

Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells

  • Song, Hyun Ju;Choi, Tai Sik;Chung, Fa Yong;Park, Sun Young;Ryu, Jung Soo;Woo, Jae Gwang;Min, Young Sil;Shin, Chang Yell;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.42-51
    • /
    • 2006
  • We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.

The Signal Transduciton of Ginsenosides, Active Ingredients of Panax ginseng, in Xenopus oocyte: A Model System for Ginseng Study

  • Nah Seung-Yeol;Lee Sang-Mok
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.66-83
    • /
    • 2002
  • Recently, we have provided evidence that ginsenosides, the active components of Panax ginseng, utilize pertussis toxin (PTX)-insensitive $G{\alpha}_{q/11}-phospholipase\;C-{\beta}3(PLC-{\beta}3)$ signal transduction pathway for the enhancement of $Ca^{2+}-activated\;Cl^{-}$ current in the Xenopus oocyte (British J. Pharmacol. 132, 641-647, 2001; JBC 276, 48797-48802, 2001). Other investigators have shown that stimulation of receptors linked to $G{\alpha}-PLC$ pathway inhibits the activity of G proteincoupled inwardly rectifying $K^+$ (GIRK) channel. In the present study, we sought to determine whether ginsenosides influenced the activity of GIRK 1 and GIRK 4 (GIRK 1/4) channels expressed in the Xenopus oocyte, and if so, the underlying signal transduction mechanism. In oocyte injected with GIRK 1/4 channel cRNAs, bath-applied ginsenosides inhibited high potassium (HK) solution-elicited GIRK current $(EC_{50}:4.9{\pm}4.3\;{\mu}g/ml).$ Pretreatment of the oocyte with PTX reduced the HK solution-elicited GIRK current by $49\%,$ but it did not alter the inhibitory ginsenoside effect on GIRK current. Prior intraoocyte injection of cRNA(s) coding $G{\alpha}_q,\;G{\alpha}_{11}\;or\;G{\alpha}_q/G{\alpha}_{11},\;but\;not\;G{\alpha}_{i2}\;or\;G{\alpha}_{oA}$ attenuated the inhibitory ginsenoside effect. Injection of cRNAs coding $G{\beta}_{1{\gamma}2}$ also attenuated the ginsenoside effect. Similarly, injection of the cRNAs coding regulators of G protein signaling 1, 2 and 4 (RGS1, RGS2 and RGS4), which interact with $G{\alpha}_i\;and/or\;G{\alpha}_{q/11}$ and stimulates the hydrolysis of GTP to GDP in active GTP-bound $G{\alpha}$ subunit, resulted in a significant reduction of ginsenoside effect on GIRK current. Preincubation of GIRK channel-expressing oocyte in PLC inhibitor (U73122) or protein kinase C (PKC) inhibitor (staurosporine or chelerythrine) blocked the inhibitory ginsenoside effect on GIRK current. On the other hand, intraoocyte injection of BAPTA, a free $Ca^{2+}$ chelator, had no significant effect on the ginsenoside action. Taken together, these results suggest that ginsenosides inhibit the activity of GIRK 1/4 channel expressed in the Xenopus oocyte through a PTX-insensitive and $G{\alpha}_{q/11}$-,PLC-and PKC-mediated signal transduction pathway.

  • PDF