• Title/Summary/Keyword: U.J.S.

Search Result 1,681, Processing Time 0.032 seconds

Kato's Inequalities for Degenerate Quasilinear Elliptic Operators

  • Horiuchi, Toshio
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • Let $N{\geq}1$ and p > 1. Let ${\Omega}$ be a domain of $\mathbb{R}^N$. In this article we shall establish Kato's inequalities for quasilinear degenerate elliptic operators of the form $A_pu$ = divA(x,$\nabla$u) for $u{\in}K_p({\Omega})$, ), where $K_p({\Omega})$ is an admissible class and $A(x,\xi)\;:\;{\Omega}{\times}\mathbb{R}^N{\rightarrow}\mathbb{R}^N$ is a mapping satisfying some structural conditions. If p = 2 for example, then we have $K_2({\Omega})\;= \;\{u\;{\in}\;L_{loc}^1({\Omega})\;:\;\partial_ju,\;\partial_{j,k}^2u\;{\in}\;L_{loc}^1({\Omega})\;for\;j,k\;=\;1,2,{\cdots},N\}$. Then we shall prove that $A_p{\mid}u{\mid}\;\geq$ (sgn u) $A_pu$ and $A_pu^+\;\geq\;(sgn^+u)^{p-1}\;A_pu$ in D'(${\Omega}$) with $u\;\in\;K_p({\Omega})$. These inequalities are called Kato's inequalities provided that p = 2. The class of operators $A_p$ contains the so-called p-harmonic operators $L_p\;=\;div(\mid{{\nabla}u{\mid}^{p-2}{\nabla}u)$ for $A(x,\xi)={\mid}\xi{\mid}^{p-2}\xi$.

Uniform WKB Wavefunctions and Franck-Condon Factors (Uniform WKB 파동함수와 Franck-Condon 인수)

  • Cho Ung-In;Eu Byung Chan
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.307-319
    • /
    • 1974
  • The accuracy of the uniform WKB solution for a two-turning point problem is examined in comparison with the corresponding numerical solution. It is found that the uniform WKB solution is extremely accurate. Various Franck-Condon factors for a model system are calculated as an example of applications of such approximate wavefunction. The accuracy of the factors thus calculated is very good. By using the uniform WKB wavefunctions, we have examined the asymptotic limit of the Frank-Condon factors and derived the condition for the frequencies of the transitions, $E'_{n'J'}-U'_{eff}(r_s)=E"_{n"J"}-U"_{eff}(r_s),$, which was obtained by Mulliken using physical arguments.

  • PDF

ON UNIFORMLY S-ABSOLUTELY PURE MODULES

  • Xiaolei Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.521-536
    • /
    • 2023
  • Let R be a commutative ring with identity and S a multiplicative subset of R. In this paper, we introduce and study the notions of u-S-pure u-S-exact sequences and uniformly S-absolutely pure modules which extend the classical notions of pure exact sequences and absolutely pure modules. And then we characterize uniformly S-von Neumann regular rings and uniformly S-Noetherian rings using uniformly S-absolutely pure modules.

CHARACTERIZATIONS OF BETA DISTRIBUTION OF THE FIRST KIND BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.441-446
    • /
    • 2003
  • Let { $X_{n}$ , n $\geq$ 1} be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function f(x). Let $Y_{n}$ = max{ $X_1$, $X_2$, …, $X_{n}$ } for n $\geq$ 1. We say $X_{j}$ is an upper record value of { $X_{n}$ , n$\geq$1} if $Y_{j}$ > $Y_{j-1}$, j > 1. The indices at which the upper record values occur are given by the record times {u(n)}, n$\geq$1, where u(n) = min{j|j>u(n-1), $X_{j}$ > $X_{u}$ (n-1), n$\geq$2} and u(1) = 1. We call the random variable X $\in$ Beta (1, c) if the corresponding probability cumulative function F(x) of x is of the form F(x) = 1-(1-x)$^{c}$ , c>0, 0$\leq$x$\leq$1. In this paper, we will give a characterization of the beta distribution of the first kind by considering conditional expectations of record values.s.