• Title/Summary/Keyword: U-Type Circular Tube

Search Result 2, Processing Time 0.014 seconds

NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE (U-자형 곡관내의 유동특성에 대한 수치해석적 연구)

  • Koh, D.H.;Kang, D.J.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.97-103
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

  • PDF

NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE (U-자형 곡관내의 유동특성에 대한 수치해석적 연구)

  • Koh, D.H.;Kang, D.J.;Song, D.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.105-114
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.