• Title/Summary/Keyword: U-Net++

Search Result 704, Processing Time 0.028 seconds

MODELING LONG-TERM PAH ATTENUATION IN ESTUARINE SEDIMENT, CASE STUDY: ELIZABETH RIVER, VA

  • WANG P.F;CHOI WOO-HEE;LEATHER JIM;KIRTAY VIKKI
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.1189-1192
    • /
    • 2005
  • Due to their slow degradation properties, hydrophobic organic contaminants in estuarine sediment have been a concern for risks to human health and aquatic organisms. Studies of fate and transport of these contaminants in estuaries are further complicated by the fact that hydrodynamics and sediment transport processes in these regions are complex, involving processes with various temporal and spatial scales. In order to simulate and quantify long-term attenuation of Polycyclic Aromatic Hydrocarbons (PAH) in the Elizabeth River, VA, we develop a modeling approach, which employs the U.S. Environmental Protection Agency's water quality model, WASP, and encompasses key physical and chemical processes that govern long-term fate and transport of PAHs in the river. In this box-model configuration, freshwater inflows mix with ocean saline water and tidally averaged dispersion coefficients are obtained by calibration using measured salinity data. Sediment core field data is used to estimate the net deposition/erosion rate, treating only either the gross resuspension or deposition rate as the calibration parameter. Once calibrated, the model simulates fate and transport PAHs following the loading input to the river in 1967, nearly 4 decades ago. Sediment PAH concentrations are simulated over 1967-2022 and model results for Year 2002 are compared with field data measured at various locations of the river during that year. Sediment concentrations for Year 2012 and 2022 are also projected for various remedial actions. Since all the model parameters are based on empirical field data, model predictions should reflect responses based on the assumptions that have been governing the fate and sediment transport for the past decades.

  • PDF

Development of fission 99Mo production process using HANARO

  • Lee, Seung-Kon;Lee, Suseung;Kang, Myunggoo;Woo, Kyungseok;Yang, Seong Woo;Lee, Junsig
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1517-1523
    • /
    • 2020
  • The widely used medical isotope technetium-99 m (99mTc) is a daughter of Molybdenum-99 (99Mo), which is mainly produced using dedicated research reactors from the nuclear fission of uranium-235 (235U). 99mTc has been used for several decades, which covers about 80% of the all the nuclear diagnostics procedures. Recently, the instability of the supply has become an important topic throughout the international radioisotope communities. The aging of major 99Mo production reactors has also caused frequent shutdowns. It has triggered movements to establish new research reactors for 99Mo production, as well as the development of various 99Mo production technologies. In this context, a new research reactor project was launched in 2012 in Korea. At the same time, the development of fission-based 99Mo production process was initiated by Korea Atomic Energy Research Institute (KAERI) in 2012 in order to be implemented by the new research reactor. The KAERI process is based on the caustic dissolution of plate-type LEU (low enriched uranium) dispersion targets, followed by the separation and purification using a series of columns. The development of proper waste treatment technologies for the gaseous, liquid, and solid radioactive wastes also took place. The first stage of this process development was completed in 2018. In this paper, the results of the hot test production of fission 99Mo using HANARO, KAERI's 30 MW research reactor, was described.

Application case for phase III of UAM-LWR benchmark: Uncertainty propagation of thermal-hydraulic macroscopic parameters

  • Mesado, C.;Miro, R.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1626-1637
    • /
    • 2020
  • This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors. This ambitious benchmark aims to determine the uncertainty in light water reactors systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. The Gesellschaft für Anlagen und Reaktorsicherheit methodology is used to propagate the thermal-hydraulic uncertainty of macroscopic parameters through TRACE5.0p3/PARCSv3.0 coupled code. The main innovative points achieved in this work are i) a new thermal-hydraulic model is developed with a highly-accurate 3D core discretization plus an iterative process is presented to adjust the 3D bypass flow, ii) a control rod insertion occurrence -which data is obtained from a real PWR test- is used as a transient simulation, iii) two approaches are used for the propagation process: maximum response where the uncertainty and sensitivity analysis is performed for the maximum absolute response and index dependent where the uncertainty and sensitivity analysis is performed at each time step, and iv) RESTING MATLAB code is developed to automate the model generation process and, then, propagate the thermal-hydraulic uncertainty. The input uncertainty information is found in related literature or, if not found, defined based on expert judgment. This paper, first, presents the Gesellschaft für Anlagen und Reaktorsicherheit methodology to propagate the uncertainty in thermal-hydraulic macroscopic parameters and, then, shows the results when the methodology is applied to a PWR reactor.

Preliminary Application of Synthetic Computed Tomography Image Generation from Magnetic Resonance Image Using Deep-Learning in Breast Cancer Patients

  • Jeon, Wan;An, Hyun Joon;Kim, Jung-in;Park, Jong Min;Kim, Hyoungnyoun;Shin, Kyung Hwan;Chie, Eui Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.149-155
    • /
    • 2019
  • Background: Magnetic resonance (MR) image guided radiation therapy system, enables real time MR guided radiotherapy (RT) without additional radiation exposure to patients during treatment. However, MR image lacks electron density information required for dose calculation. Image fusion algorithm with deformable registration between MR and computed tomography (CT) was developed to solve this issue. However, delivered dose may be different due to volumetric changes during image registration process. In this respect, synthetic CT generated from the MR image would provide more accurate information required for the real time RT. Materials and Methods: We analyzed 1,209 MR images from 16 patients who underwent MR guided RT. Structures were divided into five tissue types, air, lung, fat, soft tissue and bone, according to the Hounsfield unit of deformed CT. Using the deep learning model (U-NET model), synthetic CT images were generated from the MR images acquired during RT. This synthetic CT images were compared to deformed CT generated using the deformable registration. Pixel-to-pixel match was conducted to compare the synthetic and deformed CT images. Results and Discussion: In two test image sets, average pixel match rate per section was more than 70% (67.9 to 80.3% and 60.1 to 79%; synthetic CT pixel/deformed planning CT pixel) and the average pixel match rate in the entire patient image set was 69.8%. Conclusion: The synthetic CT generated from the MR images were comparable to deformed CT, suggesting possible use for real time RT. Deep learning model may further improve match rate of synthetic CT with larger MR imaging data.

Research on Definition and Economics of Organic Farming Methods (유기농업의 정의와 경제성에 관한 연구)

  • 김종무
    • Korean Journal of Organic Agriculture
    • /
    • v.1
    • /
    • pp.19-28
    • /
    • 1992
  • The definitions of organic farming method has rather philosophical meaning than application of agricultural practices. The meaning of organic farming method has certainly basic differences in comparison with the conventional farming methods. The main definitions of organec farming method have certainly to reduce or not to apply any kinds of farm inputs materials by increasing quality of agricultural prod-ucts. However, the quality of produced food by organic farming method should be improved in compari-son with cinvethional farming method. By applying organic method, the qualith of food, envir-onment as well as spiritual attitude of human being should be improved in future. Actually, there are very wide fields of research on organic farming methods such as production tech-niques, soil and water conservation, plant and animal production, marketing and consumers behavior on organic products. In this article the present situation of organic farming methods in the United States of Americal is investigated in cimparison with conventional rice production. The production cost of rice per acre in the United States of America mde 58, 788 Won in 1986, while it was 121, 699 Won in Korea having about 107 percent higher in Korea than tham the U.S.A There is a larger rice farm cost analysis between conventional and organic rice farm in California. The cash cost pre 1 lbs of conventional rice made 4.86 $, while the organic rice was 6.96$ showing about 43.2%higher level of cost in organic products(1 lbs=0.45359kg) At present, there is less econmic advantage of organic rice production in California because of lower yields as well as price levels, Therefore, the total net return over cash cost peracer/yeat was a little lower in organic rice production than conventional rice prouction.

  • PDF

COMPARATIVE PERFORMANCE OF BROILER CHICKS ON COMMERCIAL AND CORN-SOYBEAN MEAL BASED RATIONS

  • Ali, A.;Azim, A.;Zahid, S.;Rasool, Z.;Rehman, K.U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.115-122
    • /
    • 1993
  • A study was conducted to compare the effect of feeding commercial formula ration and corn-soybean meal based rations on growth performance, feed conversion ratio, mortality percentage, dressing percentage, carcass composition and economics of raising broiler chicks at commercial farms. 3000 day old broiler chicks were randomly divided into 4 groups with 3 replicates of 250 birds in each. Four iso-nitrogenous and isocaloric rations (A, B, C and D) were prepared and randomly allotted to each group. Ration A was a commercial broiler ration whereas ration B had the same formula with the exception that all the animal protein sources were replaced with soybean meal (SBM). Ration C was based on only corn and SBM. Ration D contained corn, SBM and 25% fullfat soybean (FFSB). The birds were given the experimental rations starter from day 1 to 28 and finisher from 29 to 49. The results indicated that the birds fed on corn-soybean meal based rations gained significantly figher weights showed better feed conversion ratio, gave higher dressing percentage with better carcass composition, lower mortality and higher net profits as compared to those fed on commercial ration. The replacement of animal protein sources in commercial ration with SBM (ration B) although did not show any significant differences in the performance of birds as compared to ration A, a little improvement was visible indicating that SBM can be used as a good substitute of animal protein sources. Similarly the replacement of SBM with FFSB up to a level of 25% did not affect the broiler performance as compared to only SBM.

Determination of Nutrient Contents and In vitro Gas Production Values of Some Legume Forages Grown in the Harran Plain Saline Soils

  • Boga, M.;Yurtseven, S.;Kilic, U.;Aydemir, S.;Polat, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.825-831
    • /
    • 2014
  • The aim of this study was to determine the nutritive value of some legume species in salt-affected soils of South-East Anatolian region using chemical composition and in vitro gas production kinetics. In this study, Lotus corniculatus, Trifolium alexandrinum, Medicago sativa were sown and tested in four different locations. A 3 by 4 factorial design with 3 legume species and 4 salt levels (non salty electrical conductivity (EC)<4 dS/m; low salt: 4 dS/m>EC<8 dS/m, medium saline: 8 dS/m>EC<16 dS/m and high salt: 16 dS/m>EC) was used in the study. Results indicated that salinity and plants had no significant effect on ash and ether extract. Dry matter (DM), acid detergent fiber, digestible dry matter, dry matter intake (DMI) were affected by plant, salinity and plant${\times}$salinity interaction. On the other hand neutral detergent fiber, relative feed value (RFV), and DMI were affected by salinity and plant${\times}$salinity interaction. Mineral contents were affected by plant species, salinity and salinity${\times}$plants interactions. In vitro gas production, their kinetics and estimated parameters such as were not affected by salinity whereas the gas production up to 48 h, organic matter digestibility, metabolizable energy (ME), and net energy lactation ($NE_L$) were affected by plant and plant${\times}$salt interaction. Generally RFVs of all species ranged from 120 to 210 and were quite satisfactory in salty conditions. Current results show that the feed value of Medicago sativa is higher compared to Lotus corniculatus and Trifolium alexandrinum.

Rank-Size Distribution with Web Document Frequency of City Name : Case study with U.S incorporated places of 100,000 or more population (인터넷 문서빈도를 통해 본 도시순위규모에 관한 연구 -미국 10만 이상의 인구를 갖는 도시들을 사례로-)

  • Hong, Il-Young
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.3
    • /
    • pp.290-300
    • /
    • 2007
  • In this study, web document frequency of city place name is analyzed and it is used as the dataset for rank-size analysis. The search keywords are compared in the context of spatial meaning and the different domain corpus is applied. The acquired search results are applied for the further analysis. Firstly, the rank-size analysis is applied to compare the result between population and document frequency. Secondly, in case of correlation analysis, the significant changes are revealed when the spatial criteria for search keywords are increased. In case of corpus, COM, NET, and ORG shows the higher coefficient values. Lastly, the cluster analysis is applied to classify the list of cities that shows the similarity and difference. These analyses have a significant role in representing the rank-size distribution of city names that are reflected on the web documents in the information society.

  • PDF

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

OVERVIEW ON HYDROGEN RISK RESEARCH AND DEVELOPMENT ACTIVITIES: METHODOLOGY AND OPEN ISSUES

  • BENTAIB, AHMED;MEYNET, NICOLAS;BLEYER, ALEXANDRE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • During the course of a severe accident in a light water nuclear reactor, large amounts of hydrogen can be generated and released into the containment during reactor core degradation. Additional burnable gases [hydrogen ($H_2$) and carbon monoxide (CO)] may be released into the containment in the corium/concrete interaction. This could subsequently raise a combustion hazard. As the Fukushima accidents revealed, hydrogen combustion can cause high pressure spikes that could challenge the reactor buildings and lead to failure of the surrounding buildings. To prevent the gas explosion hazard, most mitigation strategies adopted by European countries are based on the implementation of passive autocatalytic recombiners (PARs). Studies of representative accident sequences indicate that, despite the installation of PARs, it is difficult to prevent at all times and locations, the formation of a combustible mixture that potentially leads to local flame acceleration. Complementary research and development (R&D) projects were recently launched to understand better the phenomena associated with the combustion hazard and to address the issues highlighted after the Fukushima Daiichi events such as explosion hazard in the venting system and the potential flammable mixture migration into spaces beyond the primary containment. The expected results will be used to improve the modeling tools and methodology for hydrogen risk assessment and severe accident management guidelines. The present paper aims to present the methodology adopted by Institut de Radioprotection et de $S{\hat{u}}ret{\acute{e}}$ $Nucl{\acute{e}}aire$ to assess hydrogen risk in nuclear power plants, in particular French nuclear power plants, the open issues, and the ongoing R&D programs related to hydrogen distribution, mitigation, and combustion.