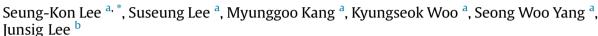
ELSEVIER

Contents lists available at ScienceDirect


Nuclear Engineering and Technology

journal homepage: www.elsevier.com/locate/net

Original Article

Development of fission ⁹⁹Mo production process using HANARO

- ^a Neutron and Radioisotope Application Research Division, Korea Atomic Energy Research Institute, 111 Daedoek-daero 989beongil, Yuseong-gu, Daejeon, 34057. Republic of Korea
- b Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, 181 Mirae-ro, Geoncheon-eup, Gyeongju-si, Gyeongsangbuk-do, 38180, Republic of Korea

ARTICLE INFO

Article history:
Received 30 September 2019
Received in revised form
16 December 2019
Accepted 17 December 2019
Available online 20 December 2019

Keywords: Molybednum-99 (Mo-99) Low enriched uranium Medical radioisotope Technetium-99 m (Tc-99 m) Research reactor

ABSTRACT

The widely used medical isotope technetium-99 m (99 Mo), which is mainly produced using dedicated research reactors from the nuclear fission of uranium-235 (235 U). 99 mTc has been used for several decades, which covers about 80% of the all the nuclear diagnostics procedures.

Recently, the instability of the supply has become an important topic throughout the international radioisotope communities. The aging of major ⁹⁹Mo production reactors has also caused frequent shutdowns. It has triggered movements to establish new research reactors for ⁹⁹Mo production, as well as the development of various ⁹⁹Mo production technologies. In this context, a new research reactor project was launched in 2012 in Korea.

At the same time, the development of fission-based ⁹⁹Mo production process was initiated by Korea Atomic Energy Research Institute (KAERI) in 2012 in order to be implemented by the new research reactor. The KAERI process is based on the caustic dissolution of plate-type LEU (low enriched uranium) dispersion targets, followed by the separation and purification using a series of columns. The development of proper waste treatment technologies for the gaseous, liquid, and solid radioactive wastes also took place. The first stage of this process development was completed in 2018. In this paper, the results of the hot test production of fission ⁹⁹Mo using HANARO, KAERI's 30 MW research reactor, was described. © 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the discovery of molybdenum-99 (99 Mo, $T_{1/2} = 2.75$ d) generator technology in the 1960s by Walt Tucker and his colleagues in Brookhaven National Laboratory, the radioisotope has been one of the most important medical radioisotopes in the last 60 years [1-4]. It is due to the technetium-99 m (99m Tc, $T_{1/2} = 66$ h), the daughter of 99 Mo, which has become popular as a diagnostic nuclear medicine because of its excellent nuclear properties. The 140.5 keV gamma emission from 99m Tc is equivalent to the X-ray, which typically ranges from 20 to 150 keV, and is ideal for gamma imaging such as SPECT. Its short half-life is also suitable as a medical tracer [5,6]. Although 99m Tc was discovered in the 1930s, the availability of the radioisotope was limited until the 1960s due to its short half-life, as well as the absence of corresponding labeling

compounds [7,8].

With the radioisotope generator technology, the single supply of longer-lived parent, ⁹⁹Mo, facilitates the utilization of its daughter, ^{99m}Tc, in the hospital for about two weeks. For generator applications, the radioactive equilibrium of the parent and daughter nuclides is mandatory. The half-life of ⁹⁹Mo is longer than its daughter, and the balance between their radioactive decay and growth converges into a transient equilibrium [2–4].

On the other hand, the development of various cold kits containing ligands to form complexes with ^{99m}Tc widened its diagnostic applications to various diseases such as bone scans, myocardial perfusion imaging, cardiac ventriculography, brain imaging, and blood pool labeling. There are currently more than 100 cold kits approved by the Food and Drug Administration (FDA) of the United States. These include DTPA, MDP, DMSA, and MIBI [7,8]. As a nuclear medicine, this radionuclide has now become the most commonly used radioisotope, as it covers more than 80% of overall diagnostic procedures in the world including tens of millions

Corresponding author.

E-mail address: seungkonlee@kaeri.re.kr (S.-K. Lee).

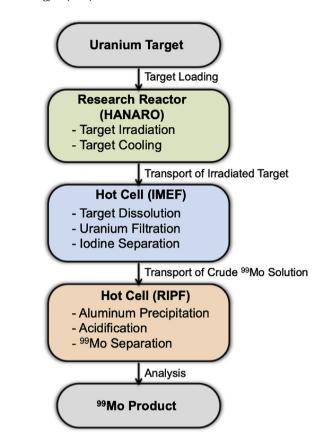
procedures annually [4,9].

The worldwide market for ⁹⁹Mo/^{99m}Tc has been mainly covered by demands from United States and Europe, but recently, demand is growing in Asian and African markets. However, the aging of major ⁹⁹Mo producing reactors has been caused by an unstable supply such as the ⁹⁹Mo crisis in 2009. The aforementioned situation stimulated international cooperation through the IAEA and the OECD-NEA for the stable supply of ⁹⁹Mo [4,9]. It also promoted the construction of new research reactors in other countries, as well as the development of various ⁹⁹Mo production technologies other than fission: The neutron capture and accelerator-based ⁹⁹Mo production. ⁹⁹Mo can be produced by the neutron capture reaction: 98 Mo (n, γ) 99 Mo. The neutron capture production scheme has advantages in simple chemical process and suppressed radiowaste generation. However, the ⁹⁸Mo neutron capture gives low production yield due to the small neutron absorption cross-section of the ⁹⁸Mo from the natural Mo (thermal neutron cross-section, $\sigma_{th} = 0.14$ b), in comparison with the ²³⁵U thermal fission crosssection ($\sigma_{th} = 584$ b) As a result, the specific activity of ⁹⁹Mo produced using fission is 2500–10,000 times higher than the 99Mo produced using the neutron capture (1-4 Ci/g).

Recently, production of 99 Mo from 100 Mo target using the 100 Mo (γ, n) 99 Mo reaction or 100 Mo (n, 2n) 99 Mo reaction is being investigated. SHINE Medical Technologies is constructing the fission 99 Mo production facility based on the bombardment of accelerator produced neutron onto the liquid uranium target. However, it will take more years for the commercial-scale production of the 99 Mo using accelerators.

Because of the aforementioned reasons, over 90% of the 99 Mo supply depends on the fission 99 Mo, which has been proven for few decades with their large-scale productivity and high specific activity ($\sim 10^4$ Ci/g) [10-16].

In the same context, the first stage of the fission-based ⁹⁹Mo production technology development for a new research reactor in Korea was carried out by KAERI during 2012–2018. The ⁹⁹Mo production technology was designed for the reactor-based fission ⁹⁹Mo process that uses low enriched uranium (LEU) targets [17]. In this study, the results of the hot test production for the fission ⁹⁹Mo process development from depleted uranium (DU) targets irradiated in HANARO, KAERI's 30 MW research reactor, was described.


2. Methods

2.1. Process scheme for the hot test production in HANARO

The production of the ⁹⁹Mo starts from irradiating the uranium target in the research reactor. Plate-type dispersion targets with uranium aluminide (UAlx) meat are assembled in capsules and a rig for irradiation in HANARO. After the irradiation, the target is transferred to the hot cell located at KAERI's Irradiated Materials Examination Facility by using a transport cask. In the IMEF hot cell, a crude ⁹⁹Mo solution is produced through a dissolution process, uranium filtration, iodine removal, and off-gas treatment. The crude ⁹⁹Mo solution is then further separated from the other impurities and fission products. The samples in this study were collected from each process step for analysis. Fig. 1 shows the flow of fission-based ⁹⁹Mo production.

2.2. Uranium target and irradiation test

Plate-type dispersion targets with uranium aluminide (UAlx) meat and aluminum alloy cladding were fabricated by KAERI. The uranium powder was prepared using the signature technology of KAERI: Centrifugal atomization [18]. LEU and DU targets were prepared for different purposes, respectively. LEU targets were

Fig. 1. Schematic process flow of fission-based ⁹⁹Mo production in HANARO.

made to verify the target itself through an irradiation test and post irradiation examinations.

Recently, major ⁹⁹Mo producers have converted their highly enriched uranium (HEU) targets to a low enriched uranium (LEU) target for nuclear non-proliferation, as supported by the related international societies [19-22]. KAERI also developed a LEU-based ⁹⁹Mo production technology for compliance with international policy. DU targets were produced for the hot test production of ⁹⁹Mo at HANARO. Irradiation capsules and a rig for the DU targets were designed and fabricated for the hot experiments. The DU plate targets were assembled with irradiation capsules made of aluminum alloy and then inserted into the rig under HANARO's working pool. The DU target rig assembly was then transferred to a reactor pool, where the reactor core is located. The rig containing two uranium target capsules was loaded into an out-core hole (IP6) for irradiation during the 97th period of HANARO operation. After irradiation for two days, the targets were cooled down for two additional days. Finally, the irradiated DU targets were transported to the hot cell in the IMEF by using a fuel cask and truck. Fig. 2 shows the overall procedures of target irradiation and transport.

2.3. Dissolution of uranium target

⁹⁹Mo can be obtained from the neutron-irradiated uranium targets through a certain series of chemical processes. The entire ⁹⁹Mo production process can be systematically integrated and carried out sequentially, batch by batch [23–25].

The ⁹⁹Mo production system demonstrated in this paper was made of two separate systems. A system for the target dissolution process, including the handling of nuclear materials, was installed and operated in an IMEF hot cell. The main purpose of the target dissolution system is to dissolve the neutron-irradiated uranium

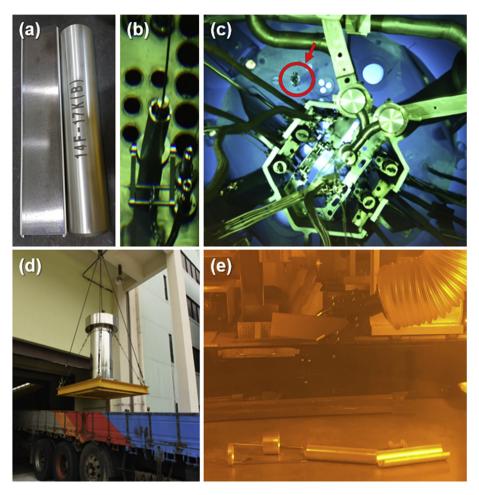


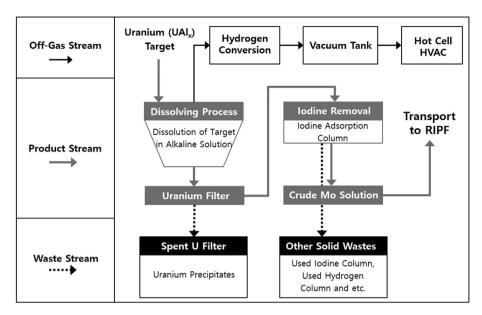
Fig. 2. Flow of target irradiation and transport in HANARO facilities. (a) Target and irradiation capsule. (b) Loading DU target capsule into the irradiation rig under the HANARO working pool. (c) Irradiation of the target rig assembly in the IP6 (red circle) of HANARO. (d) Transport of the irradiated target capsule from HANARO to IMEF using a fuel cask. (e) Disassembly of the target capsule for the dissolution process in the IMEF hot cell. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

target to eliminate the uranium/transuranic compounds, aqueous radioiodine species, and radioactive gases from the ⁹⁹Mo production stream. Fig. 3 shows the dissolution system designed to treat the single DU plate target with the following steps.

The dissolver is a jacketed reaction vessel that has a lid for the target loading. The chemical reactants can be transferred and loaded from outside the hot cell through the pre-installed supply tubes. The temperature of the system can be controlled from the equilibrium between an electric coil heater and cooling jacket. The water-cooled reflux condenser is located on top of the dissolver vessel to collect the vaporized solution from the off-gas stream during high-temperature reactions [23–25].

A filter unit was mounted directly under the dissolver to separate the unreacted uranium compounds and other precipitating elements, including transuranic nuclides. A sintered metal powder filter (STS-316L) with 3.2 mm thickness was used as a filter media. The filter unit was designed to easily replace hot cells that use master-slave manipulators [23–25].

Cylindrical columns packed with home-made silver-doped alumina were used to trap and remove the aqueous radioiodine species from the digestion solution [26]. The required quantity of adsorbents was estimated conservatively to ensure the complete elimination of the radioiodine species. A solution transfer was performed with a constant flow rate using a peristaltic pump.


The hydrogen generated from the caustic dissolution of the

target was eliminated using the catalytic converter. The hydrogen converter is a cylindrical column packed with copper oxide rods that have a uniform diameter and a length of 3–4 mm. An electric coil heater and PID controller were equipped to control the column temperature up to over 400 °C. Hydrogen gas oxidized into water vapor on the surface of the copper oxide materials [27].

A cylindrical tank with 70 L volume was installed in the hot cell and connected to the dissolving system. Its primary function is to collect and store all process off-gas from the system. Various gaseous radioisotopes with radioactive noble gases and radiohalides are required to be trapped for safety [28]. In addition, the vessel pressure of the dissolver and reservoir can be adjusted so that the induced pressure difference can be utilized between two vessels.

On the other hand, the pressure of production vessels was controlled using the vacuum tank. The pressure displacement between two neighboring vessels is a driving force to transfer process liquid or reactant from one vessel to another.

All of the above-mentioned process units were made with stainless steel and assembled on the aluminum support, as shown in Fig. 4. Finally, the integrated dissolving system was installed in an IMEF hot cell for hot demonstration. The airtightness of the entire system with multiple vessels, tubing, valves, and connections were tested and confirmed prior to the experiment. The product from the dissolving process is the crude ⁹⁹Mo solution, which contains a

Fig. 3. Process flow diagram of the target dissolution processes designed for the hot test production. The solid grey line shows the main stream of the ⁹⁹Mo flow. The dotted black line shows the solid waste stream. The solid black line represents the off-gas stream.

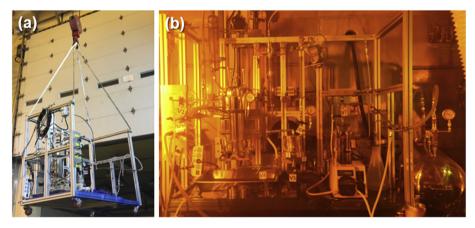


Fig. 4. Target dissolution system constructed for the hot demonstration. (a) Installation of the dissolution system using a crane. (b) Dissolution system installed in an IMEF hot cell.

majority of ⁹⁹Mo and water soluble elements.

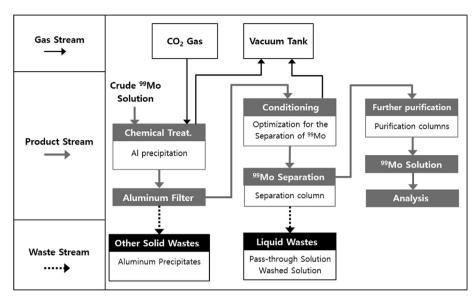
2.4. ⁹⁹Mo separation process

The system for the ⁹⁹Mo separation process without any nuclear materials was installed and operated in an RIPF hot cell. Fig. 5 presents the scheme for the ⁹⁹Mo separation system with process equipment. The ⁹⁹Mo separation system consists of a precipitation vessel, filter cage, acidification vessel, and separation column. Fig. 6 shows the ⁹⁹Mo separation system installed in the RIPF hot cell.

Practically, the quantity of the total ⁹⁹Mo presence in the target solution is tiny (~0.1% of the total fission products). The most important chemical compound in the crude ⁹⁹Mo solution is the dissolved aluminum, which forms Al(OH)₃ under an alkaline solution.

In the precipitation vessel, dissolved aluminates were removed by a precipitation reaction. Herein, the aluminum ion was transferred to aluminum hydroxide (Al(OH) $_4$ \rightarrow Al(OH) $_3$ (s) \downarrow + OH $^-$) under a pH 9–10. As a pH buffer, CO₂ gas was introduced in the precipitation vessel to control the solution pH. When the CO₂ gas dissolved in water, it forms a carbonic acid (CO₂(g) + H₂O \leftrightarrow

H₂CO₃). In addition, the carbonic acid neutralizes the solution's alkalinity. A filter cage is needed to remove the aluminum precipitates from the solution in the precipitation vessel.


The conditioning of the ⁹⁹Mo containing solution was carried out in the acidification vessel, prior to the column separation. A separation column with a chelating ion exchange resin was used to increase the ⁹⁹Mo separation efficiency under an acidic condition. Also, the ⁹⁹Mo ions in the solution should have a Mo-thiocyanate complex compound to increase the residence time in the separation column. Finally, the separation column filled by the chelating ion exchange resin selectively adsorbs the modified ⁹⁹Mo in the acidified solution.

Samples from the final ⁹⁹Mo solution were taken for the further analysis. Based on the impurity levels in the solution, a further purification step may be needed.

3. Results and discussion

3.1. Target dissolution and iodine separation

An irradiated target capsule was transferred from HANARO to

Fig. 5. Scheme for the ⁹⁹Mo separation system designed by KAERI. The solid grey line shows the main stream of the ⁹⁹Mo flow. The dotted black line shows the solid and liquid waste streams. The solid black line represents the gas and vacuum streams.

Fig. 6. 99 Mo separation system installed in an RIPF hot cell.

the hot cell in IMEF using a fuel cask. The target capsule was then carefully disassembled using manipulators equipped with dedicated tools.

The DU target plate taken from the capsule was inserted to the dissolver filled with 3 M sodium hydroxide (NaOH) solution. The reaction was triggered as we increased the solution temperature to above 60 °C. Aluminum and uranium species in the target plate reacted with sodium hydroxide to produce sodium aluminate (NaAlO₂) and a few kinds of uranium compounds, mostly uranium oxide (UO₂) and sodium diuranate (Na₂U₂O₇) forms [25]. Although the reaction between aluminum and sodium hydroxide is highly exothermic, additional external heat was added through an electric coil heater to promote the initial reaction rate (Equation (1)). The temperature of the solution was kept constant at about 80 °C throughout the process.

$$2Al + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$$
(exothermic reaction)

(1)

The internal pressure of the dissolver was also maintained at a

steady pace with a negative pressure condition near -0.05 MPa in order to prevent the leakage of process off-gas. In addition, the system pressure was controlled by adjusting the valve linked to the vacuum tank. The hydrogen converter located between the dissolver and vacuum tank operated under a very high temperature over 350 °C during the target dissolution process. This eliminated the hydrogen gas from the off-gas stream by converting it into water vapor (equation (2)) [27]. The final destination for the off-gas stream without hydrogen was the vacuum tank.

$$CuO + H_2 \rightarrow Cu^0 + H_2O$$
 (2)

With the vigorous caustic dissolution reaction for over 70 min, the DU target plate completely collapsed and was digested in the solution. Multiple water-soluble fission products, including the ⁹⁹Mo, were eluted into the solution as cationic or anionic forms. The digestion solution also contained colloidal suspensions from the precipitation of insoluble compounds. The precipitates can be removed by filtration using a sintered metal powder filter. In particular, most of the unburned uranium compounds and transuranic species were collected from the filter media and were completely segregated from the ⁹⁹Mo containing solution stream.

The filtered solution then passed through the iodine column to remove the radioiodine species from the solution. The iodine removal columns were filled with the alumina particles doped with silver nanoparticles, which showed a high radioiodine removal efficiency (99.7%) from the previous studies [2]. The final ⁹⁹Mo containing solution was sampled and analyzed with a HPGe gamma spectrometer. No significant radioiodine species was identified through the analysis. The crude ⁹⁹Mo solution from the target dissolution system was collected and sealed in the stainless-steel bottle. The bottle was then transported to the hot cell in RIPF for the subsequent ⁹⁹Mo separation process, using a cask originally designed for the Ir-192 transport.

3.2. ⁹⁹Mo separation

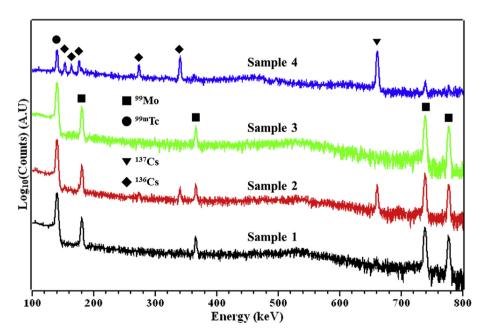
Crude ⁹⁹Mo was introduced to the ⁹⁹Mo separation system installed in the RIPF of KAERI. To minimize the potential release of volatile radioactive species, the separation system was operated

under weak a vacuum condition as a closed system.

The crude ⁹⁹Mo bottle was connected to the precipitation vessel in the separation system (Fig. 1). The solution in the bottle was transferred by a vacuum suction. Then CO₂ gas was injected to the vessel to initiate aluminum precipitation. As the aluminum precipitation reaction proceeded, the solution became translucent in the beginning, and opaque later on. The turbidity of the solution was due to the generation of aluminum hydroxide colloidal particles. After precipitation, the CaCl₂ solution was added in the vessel to remove excess carbonate ions $(Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3(s))$, $K_{sp} = 1.4 \times 10^{-8})$. The precipitates containing Al(OH)₃ and CaCO₃ were removed by using a filter cage. The filter cage was gently washed with deionized water to minimize the loss of the coprecipitated ⁹⁹Mo species. The filtrates and washed solution were collected together in the acidification vessel. Ascorbic acid and KSCN were added into the acidification vessel to synthesize the Mothiocyanate complex. H₂SO₄ was dropped in the vessel to decompose any remaining carbonate ions, which affect the efficiency of the separation yield. After conditioning in the acidification vessel, the ⁹⁹Mo containing solution passed through the column filled with the chelating ion exchange resin to adsorb the ⁹⁹Mo complex. Finally, the ⁹⁹Mo collected in the column can be eluted from the separation column using a 1 M NaOH solution.

3.3. Calculation of nuclear reaction

The production of various nuclides through the nuclear fission was calculated by using the burnup calculation module of MCNP6 and ORIGEN 2.2. Each calculation utilized the ORIGEN library data produced from the nuclear data and neutron flux at the exact irradiation location. Both calculations showed almost identical results with about 1% difference. The estimated ⁹⁹Mo activity calculated with MCNP6 ranged from 2.180 to 2.41 Ci, and the value acquired from the ORIGEN 2.2 ranged from 2.157 to 2.388 Ci, respectively. The average power generation from a single DU target ranged from 111.90 to 123.97 W, which fulfilled the operation conditions needed to run HANARO safely.


3.4. Analysis

To trace the flow of ⁹⁹Mo species during the separation process, the samples were collected at each step: The crude ⁹⁹Mo solution (sample 1), the filtrates after aluminum precipitation (sample 2), the eluted ⁹⁹Mo solution from the separation column (sample 3), and the effluent of the separation column, which represents the waste stream (sample 4). The presence of the radionuclides in the samples were determined by using a HPGe gamma-ray spectroscopy [25]. Fig. 7 shows the gamma spectra taken from the samples.

The quantitative analysis was carried out using the 739.5 keV peak, which has highest efficiency among the ⁹⁹Mo gamma spectra. The calibrated activity of the crude ⁹⁹Mo solution (sample 1) was 681 mCi, which corresponds to 34% of the predicted inventory calculated in section 3. 3. The separation yield (120.8%) of the ⁹⁹Mo was measured by comparing the activities of the filtrates after aluminum precipitation (sample 2, 24 mCi) and the eluted from the separation column (sample 3, 29 mCi). The overall recovery yield can be calculated by comparing the activities of the crude ⁹⁹Mo solution (sample 1) and the eluted ⁹⁹Mo solution from the separation column (sample 3). The overall recovery rate was 4.3%, due to the co-precipitation of the ⁹⁹Mo in the aluminum precipitation step. Although the KAERI's unique aluminum precipitation process. prior to the ⁹⁹Mo separation, has several advantages, such as simplified purification process and easy treatment of the intermediate level liquid waste stream, the majority of ⁹⁹Mo remain in the aluminum precipitates. The recovery yield could be enhanced by adding the eluted ⁹⁹Mo from the aluminum precipitates.

No peaks associated with ¹³¹I (284.3 keV 6.06%, 364.5 keV 81.22%, and 637.0 keV 7.27%) were observed from the samples. This result representing no iodine species existed in the solution, and the peaks were successfully removed from the dissolving system through the iodine removal column.

⁹⁹Mo peaks from the gamma spectra of samples 1, 2, and 3 verified the presence of ⁹⁹Mo throughout the entire separation process flow. This meant there was a successful connection of each process step in the separation system. Not only ⁹⁹Mo (181.1 keV 6.07%, 366.4 keV 1.16%, 739.5 keV 12.14%, and 777.9 keV 4.35%), but

Fig. 7. Gamma spectra of samples collected at each step. The crude ⁹⁹Mo solution (sample 1), the filtrates after aluminum precipitation (sample 2), the eluted ⁹⁹Mo solution from the separation column (sample 3), and the effluent of the separation column (sample 4).

also the other fission products such as 99m Tc (140.5 keV 87.2%), 136 Cs (153.3 keV 7.47%, 164.0 keV 4.62%, 176.6 keV 13.63%, 273.7 keV 12.69% and 340.6 keV 48.61%), and 137 Cs (661.7 keV 85.21%) were analyzed from the gamma spectrum of the filtrates sampled after the aluminum precipitation process.

The ⁹⁹Mo solution sample taken from the elutes of the separation column presented only ⁹⁹Mo and ^{99m}Tc, which were generated by the decay of ⁹⁹Mo. These results strongly support the successful separation of ⁹⁹Mo species from the dissolution of the irradiated uranium target and also from the following separation process.

On the other hand, the effluent from the separation column, representing the liquid waste stream, mainly showed peaks from other fission products. This confirms that a tiny fraction of ⁹⁹Mo flow was in the waste stream as a loss. In addition, the majority of the produced ⁹⁹Mo exists in the separation column.

4. Summary

⁹⁹Mo has long been one of the most important isotopes as a parent of the most commonly used medical isotope, ^{99m}Tc, for diagnosis. In this study, the overall ⁹⁹Mo production scheme was presented. In particular, the fission-based ⁹⁹Mo production process developed by KAERI was described, with their recent hot demonstration using HANARO in 2018. The DU plate-type targets were fabricated for the test and irradiated in HANARO for about two days, which resulted in ⁹⁹Mo generation with other fission products. The development was verified by sample analysis with gamma spectroscopy.

The results of the development presented in this study are the first steps toward commercial-scale ⁹⁹Mo production. Further development of the mass production technology is required for the practical implementation of the process to other Korean new research reactors as a second stage development. In the future, quantitative analysis will be added for more accurate quality control. On the other hand, an effective strategy to reduce the waste generation from the fission ⁹⁹Mo production will become more important. This is because a dramatic increase in the intermediate level liquid waste is expected from the conversion of LEU targets instead of the HEU in the ⁹⁹Mo production [29]. The final goal of the project is to aim for the weekly production of 2000 Ci (6-day calibrated) ⁹⁹Mo from the new research reactor, which corresponds to 100% of domestic demand, as well as about 20% of the international market.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2017M2A2A6A01071321 and NRF-2017M2A2A6A05016598).

References

- International Atomic Energy Agency, Production Technologies for ⁹⁹Mo and ^{99m}Tc, IAEA-TECDOC-1065, IAEA, Vienna, 1999.
- [2] International Atomic Energy Agency, Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m, IAEA Nuclear Energy Series, No. NF-T-5.4, IAEA, Vienna, 2013.
- [3] National Research Council of the National Academy of Sciences, Medical Isotope Production without Highly Enriched Uranium, National Academic Press, Washington D. C., 2009.
- [4] L.G. Stang, Manual of Isotope Production Processes in Use at Brookhaven

- National Laboratory, BNL-864, Brookhaven National Laboratory, Upton, New York, 1964.
- [5] H. Anger, A New Instrument for Mapping Gamma-Ray Emitters. Biology and Medicine Quarterly Report, UCRL-3653, University of California Radiation Laboratory, Berkeley, 1957.
- [6] H. Anger, Scintillation camera with multichannel collimators, J. Nucl. Med. 5 (1964) 515–531.
- [7] R. Dreyer, R. Muenze, Labeling of human serum albumin with 99m-Tc (in German). Nat. Wiss. R. 18 (1969) 629—633.
- [8] W.C. Eckelmann, Unparalleled contribution of technetium-99m to medicine over 5 decades, JACC (J. Am. Coll. Cardiol.): Cardiovasc. Imag. 2 (2009) 364–368
- [9] OECD Nuclear Energy Agency High-Level Group on the Security of Supply of Medical Radioisotopes, The Supply of Medical Radioisotopes - 2015 Medical Isotope Supply Review: ⁹⁹Mo/^{99m}Tc Market Demand and Production Capacity Projection 2015-2020, Nuclear Development NEA/SEN/HLGMR 5, OECD NEA, Paris. 2015.
- [10] Yu Kotschkov, V.V. Pozdeyev, A.I. Krascheninnikov, N.V. Zakharov, Production of fission ⁹⁹Mo with closed uranium cycle at the nuclear reactor WWR-Ts (in Russian), Radiokhimiya 54 (2012) 173–177.
- [11] A. Sameh, H.J. Ache, Production techniques for fission molybdenum-99, Radiochim. Acta 41 (1987) 65–72.
- [12] L.C. Brown, Methods and Apparatus for Selective Gaseous Extraction of Molybdenum-99 and Other Fission Product Radioisotopes, 2015. Patent EP 2580763 R1
- [13] R. Muenze, O. Hladik, G. Bernhard, W. Boessert, R. Schwarzbach, Large scale production of fission ⁹⁹Mo by using fuel elements of a research reactor as starting material, Int. J. Appl. Radiat. Isot. 35 (1984) 49–54.
- [14] D. Novotny, G. Wagner, Procedure of small scale production of Mo-99 on the basis of irradiated natural uranium metal as target, in: Consultants Meeting on Small Scale Production of Fission Mo-99 for Use in Tc-99m Generators, IAEA, Vienna, July 7–10, 2003.
- [15] J. Sauerwein, K. Brooks, C. Critch, Selective gas extraction: a transformational production technology being implemented by GA, MURR and NORDION, in: Mo-99 Topical Meeting on Molybdenum-99 Technology Developments, Boston, MA, Aug. 31-Sept, vol. 3, 2015.
- [16] G.J. Beyer, B. Eichler, T. Reetz, R. Muenze, J. Comor, New head process for non-HEU ⁹⁹Mo-production based on the oxidation of irradiated UO₂-pellets forming soluble U₃O₈, Nucl. Technol. Radiat. Prot. 31 (2016) 102–108.
- [17] S.-K. Lee, G.J. Beyer, J.S. Lee, Development of industrial-scale fission ⁹⁹Mo production using low enriched uranium target, Nucl. Eng. Technol. 48 (2016) 613–623.
- [18] H.J. Ryu, C.K. Kim, M. Sim, J.M. Park, J.H. Lee, Development of high-density U/ Al dispersion plates for Mo-99 production using atomized uranium powder, Nucl. Eng. Technol. 45 (2013) 979–986.
- [19] M. Druce, Australian's Experiences with Non-HEU Mo-99 Production, Supporting Small-Scale Non-HEU Mo-99 Production Capacity Building, Coordination Meeting for TC Project INT1056, IAEA, Vienna, 2013.
- [20] G.F. Vandegrift, G. Hofman, C. Conner, J. Sedlet, D. Walker, A. Leonard, E.L. Wood, T.C. Wiencek, J.L. Snelgrove, A. Mutalib, B. Purwadi, H.G. Adang, L. Hotman, K. Moeridoen, A. Sukmana, A.S. Sriyono, H. Nasution, D.L. Amin, A. Basiran, A. Gogo, D. Sunaryadi, T. Taryo, Full-scale demonstration of the CINTICHEM process for the production of Mo-99 using a low-enriched target, RERTR Meeting, Sao Paolo, Brazil (1998). Oct. 18-23.
- [21] G.F. Vandegriff, D. Stepinski, J. Jerden, A. Gelis, E. Krahn, L. Hafenrichter, J. Holland, GTRI Process Technology in Technical Development for Conversion of ⁹⁹Mo Production to Low Enriched Uranium, RERTR Meeting, Santiago, 2011. Chile Oct. 23-27.
- [22] J. Kuperman, The global threat reduction initiative and conversion of isotope production to LEU targets, in: Paper Presented at the 2004 International Meeting on Reduced Enrichment for Research and Test Reactors, Vienna, October 7, 2004.
- [23] A. Sameh, Production cycle for large scale fission Mo-99 separation by the processing of irradiated LEU uranium silicide fuel element targets, Sci. Technol. Nucl. Install. (2013) 704846.
- [24] S. Dittrich, History and actual state of non-HEU fission-based Mo-99 production with low-performance research reactors, Sci. Technol. Nucl. Install. (2013) 514894.
- [25] R. Muenze, G.J. Beyer, R. Ross, G. Wagner, D. Novotny, E. Franke, M. Jehangir, S. Pervez, A. Mushtaq, The fission-based ⁹⁹Mo production process ROMOL-99 and its application to PINSTECH Islamabad, Sci. Technol. Nucl. Install. (2013) 932546.
- [26] T. Kim, S.-K. Lee, S. Lee, J.S. Lee, S.W. Kim, Development of silver nanoparticle—doped adsorbents for the separation and recovery of radioactive iodine from alkaline solutions, Appl. Radiat. Isot. 129 (2017) 215–221.
- [27] W.D. Bond, W.E. Clark, Reduction of Cupric Oxide by Hydrogen. I. Fundamental Kinetics, ORNL-2815, Oak Ridge National Laboratory, Oak Ridge, 1960.
- [28] T.W. Bowyer, R. Kephart, P.W. Eslinger, J.I. Friese, H.S. Mile, P.R. Saey, Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions, J. Environ. Radioact. 115 (2003) 192–200.
- [29] International Atomic Energy Agency, Management of Radioactive Waste from "Mo Production, IAEA-TECDOC-1051, IAEA, Vienna, 1998.