본 연구에서는 Sentinel-1 synthetic aperture radar 영상을 활용하여 딥러닝 모델인 Swin Transformer로 국내 농업용 저수지의 수표면적을 모니터링 하는 방법을 제시한다. Google Earth Engine 플랫폼을 이용하여 70만톤 급, 90만톤급, 150만톤급 저수지 7개소에 대한 2017년부터 2021년 데이터셋을 구축하였다. 저수지 4개소에 대한 영상 1,283장에 대해서 셔플링(suffling) 및 5-폴드(fold) 교차검증 기법을 적용하여 모델을 학습하였다. 시험평가 결과 모델의 윈도우 크기를 12로 설정한 Swin Transformer Large 모델은 각 폴드에서 평균적으로 99.54%의 정확도와 95.15%의 mean intersection over union (mIoU)을 기록하여 우수한 의미론적 분할 성능을 보여주었다. 최고 성능을 보여준 모델을 나머지 3개소 저수지 데이터셋에 적용하여 성능을 검증한 결과, 모든 저수지에서 정확도 99% 및 mIoU 94% 이상을 달성함을 확인했다. 이러한 결과는 Swint Transformer 모델이 국내의 농업용 저수지의 수표면적 모니터링에 효과적으로 활용될 수 있음을 보여준다.
농업용 저수지는 전국적으로 중요한 수자원으로 기후변화에 따른 가뭄과 같은 이상기후의 영향에 취약한 특성을 가지며 적절한 운영을 위해 강화된 관리가 필요하다. 지속적인 모니터링을 통한 수위 추적(water level tracking)이 필요하지만 현실적인 문제로 현장 실측 및 관측이 어려운 실정이다. 본 연구는 저수지 수표면적을 측정하기 위해 광역 모니터링이 가능한 위성레이더 자료를 이용하여 4가지 AI 모델 간의 수체 탐지 성능에 대해 객관적인 비교를 제시한다. 위성 레이더자료는 Sentinel-1 SAR 이미지를 사용하였으며, 광학영상과 달리 기상환경에 영향을 적게 받기 때문에 장기 모니터링에 적합하다. 드론 이미지, Sentinel-1 SAR 그리고 DSM 데이터를 사용하여 Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), Automated Machine Learning (AutoML)의 4가지 AI 모델을 구축했다. 연구대상 저수지는 총 22개소로 유효저수량이 30만톤 미만의 중소형 저수지이다. 총 45개 이미지가 모델 훈련과 검증에 사용되었으며, 연구 결과 AutoML 모델이 Accuracy=0.92, mIoU=0.81로 다른 3가지 모델에 비해 수체 픽셀 분류에서 0.01-0.03 더 나은 것을 보여주었다. 해당 결과는 SAR 영상으로부터 AutoML을 이용한 중소형 저수지 대상의 수체 분류 기법이 기존의 머신러닝 기법만큼의 성능을 보이는 것을 보여주었고, 학습을 통한 수표면적 분류 기술의 저수지 모니터링에 대한 적용 가능성을 보여주었다.
고밀도 도심지의 열섬현상이 도시 기온을 더 높이고 있으며 이로부터 대기오염 악화, 냉방 에너지 소비 증가 및 온실가스 배출 증대와 같은 부정적 영향들이 발생한다. 녹지의 추가 확보가 어려운 도시 환경에서 옥상녹화는 효율적인 온실가스 감축 전략이다. 본 연구에서는 열섬현상 현황 분석에서 더 나아가 고해상도 위성자료 및 공간정보를 활용하여 연구 지역 내 옥상녹화 가용면적 산정 후 옥상녹화가 가져오는 온도 분포 예측을 통한 열섬현상 완화도 및 이산화탄소 흡수량 평가를 수행하였다. 이를 위해 WorldView-2 위성자료를 활용하여 부산시 도시열섬 지역의 기존 토지피복을 분류하고 머신러닝 기법을 적용하여 옥상녹화 전 후 온도 분포 예측 모델을 개발하였다. 옥상녹화 면적 변화에 따른 열섬현상 완화도를 평가하기 위해 랜덤포레스트 기법을 통해 온도가 종속변수인 온도 분포 예측모델을 구축하였고, 이 과정에서 랜덤포레스트 모델의 훈련자료로 사용될 고해상도 지표 온도 도출을 위해 Google Earth Engine을 활용하여 Landsat-8과 Sentinel-2 위성자료를 융합하는 다중회귀모델을 적용하였다. 또한, 옥상녹화용 초본식생별 이산화탄소 흡수량을 기반으로 녹화 면적에 따른 이산화탄소 흡수량을 평가하였다. 연구 결과를 통해 개발된 위성자료 활용 도시 열섬현상 평가 및 랜덤포레스트 모델 기반 온도 분포 예측 기술은 도시열섬 취약 지역에 확대 적용이 가능할 것으로 기대된다.
인터넷의 발달과 가속화는 다양한 상호문화를 만들어냈고 애니메이션은 이러한 환경에 발맞추어 새로운 특성을 지닌 웹애니메이션들을 탄생시켰다. 국내에서도 2000년대 초반 <마시마로>나 <졸라맨>과 같은 웹기반의 플래시 애니메이션들을 통해 창작 애니메이션의 발전과 도약을 꿈꾸었지만 열풍은 오래 지속되지 못했고, 다양한 스타일과 서사들로 발전, 확장해 나가지 못했다. 적은 용량으로 최고의 컨텐츠를 선보이며 관객들을 빠른 시간 안에 사로잡아야했던 웹기반의 애니메이션들은 자극적이고 코믹한 서사 전략으로 일관했고, 상징적 자리에 오르지 못한 영상들은 '웹'이라는 매체 자체의 특성과 이에 대한 심도 있는 연구의 부재 속에서 열악한 수익구조, 모바일 게임과 이러닝과 같은 새로운 산업의 급부상, 다양성의 부재등으로 인해 1회용 소모성 컨텐츠 그 이상도 이하도 아니게 되었다. U.C.C(User Created Content)를 비롯한 멀티미디어 시대의 소규모 영상들은 여전히 범람하고 있지만, 이렇듯 국내 웹애니메이션은 후속 세대를 충분히 양성해내지 못하고 있다. 따라서 본 연구는 웹애니메이션에 대한 다양한 사례 연구의 부재를 인식하고, 웹애니메이션의 새로운 형식과 스타일을 선보이며 2007년 국제에미상 수상으로 그 가능성을 입증한 <이제부터 제리타임!>의 서사적 특징을 웹애니메이션의 새로운 사례로써 소개, 분석하고자 한다. 특히 이 웹애니메이션이 어떻게 텔레비전과 영화와 같은 기존 전통 매체들과의 차이점을 활용해 공감을 이끌어 내었는지를 서사적 관점에서 살펴보고자 한다. 이는 웹이라는 환경과 문화가 주는 독특한 특징들을 새롭게 환기시키는 동시에, 웹애니메이션의 현재를 재고하고, 나아가 여러 가지 제약으로 침체되었던 국내 웹애니메이션 제작에 있어 향 후 새로운 활기와 가능성을 모색하게 하는데 큰 보탬이 될 수 있다는 점에 있어서 충분한 연구 가치와 그 가능성을 지니고 있다고 볼 수 있다. 뿐만 아니라, 이를 통해 최근 웹 애니메이션의 새로운 실험과 작품경향에 대해서도 살펴볼 수 있는 기회를 마련하고자 한다.
주식 시장은 기업 실적 및 경기 상황뿐만 아니라 정치, 사회, 자연재해 등 예기치 못한 요소들에 영향을 받는다. 이런 요소들을 고려한 정확한 예측을 위해서 다양한 기법들이 사용된다. 최근 인공지능 기술이 화두가 되면서 이를 활용한 주가 예측 시도 또한 이루어지고 있다. 본 논문은 단순히 주식 관련 데이터뿐만 아닌, 거시 경제적 지표 등을 활용한 여러 종류의 데이터를 이용하여 주가에 영향을 미치는 요소에 관한 연구를 제안한다. KOSDAQ을 대상으로 1년 치 종가, 외국인 비율, 금리, 환율 데이터를 다양하게 조합한 후에 딥러닝의 Nonlinear AutoRegressive with eXternal input (NARX) 모델을 활용한다. 이 모델을 통해 1달 치 데이터를 생성하고 각 데이터 조합을 통해 만들어진 예측값을 RMSE를 통해 실제값과 비교, 분석한다. 또한, 은닉층에서 뉴런의 수, 지연 시간을 다양하게 설정하여 RMSE를 비교한다. 분석 결과 뉴런은 10개, 지연 시간은 2로 설정하고, 데이터는 미국, 중국, 유럽, 일본 환율의 조합을 사용할 때 RMSE 0.08을 보이며 가장 낮은 오차를 기록하였다. 본 연구는 환율이 주식에 가장 영향을 많이 미친다는 점과 종가 데이터만 사용했을 때의 RMSE 값인 0.589에서 오차를 낮췄다는 점에 의의가 있다.
학생들이 다른 언어를 배우고 익히도록 동기부여를 하기 위해 기발한 독창성과 새로운 기술을 필요로 할 것이다. 멀티미디어를 이용하면 수업과 과제를 모든 학생들에게 흥미롭게 해줄 것 이다. 그들에게 관심이 있는 스마트 폰의 사용과, 노트북과 무선 인터넷의 사용으로 학생들은 그들의 언어 기술을 실제로 어디에서나 공부할 수 있을 것 이다. 예를들어 팟캐스트, 인터넷망을 통해 다양한 콘텐츠를 제공하는 서비스 Podcasts 도구 방법 등을 통해 ESL(English as a Second Language) 학습이 매우 용이하게 되었다. 즉 이러한 멀티미디어 tools를 이용한 외국어 듣기 연습 서비스 등 다양한 교수 학습방법 개발이 필요하다. 효율적인 영어 교육을 위한 도입된 이러한 여러 멀티미디어 기기의 사용은 여러 가지 독특한 장점을 가지고 있다. 본 연구에서 영어 교육을 최대화하기 위해 멀티미디어의 특징과 그 활용에 대해 연구하고자 한다. 디지털교과서 및 영어 수업을 위한 멀티미디어 콘텐츠 도구 활용, 인터넷 방송은 물론 원격화상 수업, 사이버 학습 등 1:1 영상 교육을 이용한 유비쿼터스 학습 환경을 제시하고자 한다. 더 나아가 최첨단 u-러닝 기기의 체험을 통해 미래 교육 변화를 조망하고 또한 다양한 수업기기와 변화된 수업시스템 모델을 통해 영어 교육의 새로운 방향을 제시하고자 한다.
미국 무역위원회(United States International Trade Commission)는 불공정 무역으로 인해 무역 질서를 해치는 경우 상계 관세(Countervailing Duties)와 반덤핑 관세(Antidumping Duties) 등을 징수하고 있다. 본 연구에서는 상기 연구 목적을 달성하기 위하여 상계 관세 및 반덤핑 관세와 관련된 데이터를 수집해 양적 분석을 수행하였다. 몇 가지 데이터 마이닝(Data mining) 기법을 활용한 본 연구의 양적 분석 결과, 미국의 상계 관세 및 반덤핑 관세 부과 경향이 우리나라의 중공업 산업의 성장률에 유의한 영향을 미친다고 잠정적으로 결론 내릴 수 있었다. 본 연구의 가장 큰 기여점은 '미국의 보호주의 무역기조가 울산지역의 주력산업의 경영성과에 부정적인 영향을 미칠 수 있다'는 직관적인 명제를 과거 데이터를 가지고 객관적으로 검증해보고 그 영향 정도를 계량화해 측정할 수 있도록 한 것이라고 할 수 있다.
To investigate the industrial availability of liquid fermentation (PL-ferment) by Phellinus linteus mycelium as a postbiotics for the inhibition of inflammation, PL-ferment was fractionated into culture supernatant (CS), hot-water extract (HW) from PL-ferment, EtOH-precipitate (CP) fractionated from HW, and the dialysate (DCP) of CP. Compared to the other fractions, DCP which is expected to contain exopolysaccharide (EPS) as the major component, significantly decreased the production of NO, IL-6, and MCP-1 in LPS-induced RAW 264.7 cells, and IL-6 and IL-8 in TNF-α and IFN-γ-induced HaCaT cells. The general component analysis results showed that no significant difference in components was observed between the fractions, whereas sugar composition analysis revealed that DCP had decreased glucose and increased mannose contents compared to the other fractions. This suggests that mannose played an important role in the anti-inflammatory activity of the active fraction, DCP. Molecular weight distribution analysis revealed that DCP was mainly composed of low-molecular-weight material-removed high-molecular-weight polysaccharides of 18-638 kDa, suggesting that EPS originated from P. linteus EPS. In conclusion, our results suggest that the DCP of P. linteus mycelium fermentation using the anti-inflammatory activity could be used industrially as postbiotic material.
항해용 X-band 레이다를 이용한 파랑관측은 기존의 파랑관측 방법인 부이식 파고계, 압력식 파고계, 초음파식 파고계에 비해 많은 이점이 있다. 예를 들면 유실과 파손의 위험이 없고, 유지관리 비용이 적게 들며, 심해부터 천해까지 파랑의 공간적 분포를 알 수 있다. 본 논문에서는 레이다형 파고계의 유의파고 측정 정확도를 높이는 인공신경망을 이용한 알고리즘을 제시하였다. 레이다형 파고계에서 유의파고를 추정하는 전통적인 방법은 신호 대 잡음 비율(${\sqrt{SNR}}$) 또는 신호 대 잡음 비율과 첨두주기(TP)를 이용하는 방법이 있다. 본 연구에서는 신호 대 잡음 비율, 첨두주기 및 레이다 이미지 해상도 비율(Rval > k)을 입력변수로 하는 인공신경망 알고리즘을 이용하여 유의파고 추정의 정확도를 향상시켰다. 개발된 알고리즘을 울진 후정해수욕장에서 초음파식 파고계로 측정한 유의파고의 시계열과 비교하여 정확도 향상을 확인하였다.
뇌 전산화단층촬영은 비침습성, 3차원 영상 제공, 저방사선량 등의 장점 때문에 뇌출혈과 같은 질병 진단을 위해 시행된다. 하지만 뇌 전산화단층영상 판독을 위한 전문의의 인력 공급 부족 및 막대한 업무량으로 인해 수많은 판독 오류 및 오진이 발생하고 있다. 이와 같은 문제를 해결하기 위해 객체 검출을 위한 다양한 인공지능 기술이 개발되고 있다. 본 연구에서는 뇌 전산화단층영상으로부터 뇌출혈 검출을 위한 딥러닝 기반 YOLOv5s 모델의 적용 가능성을 확인하였다. 또한 YOLOv5s 모델 학습 시 초매개변수를 변화시켜 학습된 모델의 성능을 평가하였다. YOLOv5s 모델은 backbone, neck 및 output 모듈로 구성하였고, 입력 CT 영상 내 뇌출혈로 의심되는 부위를 검출하여 출력할 수 있도록 하였다. YOLOv5s 모델 학습 시 활성화함수, 최적화함수, 손실함수 및 학습 횟수를 변화시켰고, 학습된 모델의 뇌출혈 검출 정확도 및 학습 시간을 측정하였다. 연구결과 학습된 YOLOv5s 모델은 뇌출혈로 의심되는 부위에 대한 경계 박스 및 해당 경계박스에 대한 정확도를 출력할 수 있음을 확인하였다. Mish 활성화함수, stochastic gradient descent 최적화함수 및 completed intersection over union 손실함수 적용 시 YOLOv5s 모델의 뇌출혈 검출 정확도 향상 및 학습 시간이 단축되는 결과를 확인하였다. 또한 YOLOv5s 모델의 뇌출혈 검출 정확도 및 학습 시간은 학습 횟수에 비례하여 증가하는 결과를 확인하였다. 따라서 YOLOv5s 모델은 뇌 전산화단층영상을 이용한 뇌출혈 검출을 위해 활용할 수 있으며, 최적의 초매개변수 적용을 통해 성능을 향상 시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.