• Title/Summary/Keyword: Tyrosine residues

Search Result 85, Processing Time 0.021 seconds

Oxidative modification of human ceruloplasmin induced by a catechol neurotoxin, salsolinol

  • Kim, Seung-Sub;Kang, Jae Yoon;Kang, Jung Hoon
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.45-50
    • /
    • 2016
  • Salsolinol (SAL), a compound derived from dopamine metabolism, is the most probable neurotoxin involved in the pathogenesis of Parkinson's disease (PD). In this study, we investigated the modification and inactivation of human ceruloplasmin (hCP) induced by SAL. Incubation of hCP with SAL increased the protein aggregation and enzyme inactivation in a dose-dependent manner. Reactive oxygen species scavengers and copper chelators inhibited the SAL-mediated hCP modification and inactivation. The formation of dityrosine was detected in SAL-mediated hCP aggregates. Amino acid analysis post the exposure of hCP to SAL revealed that aspartate, histidine, lysine, threonine and tyrosine residues were particularly sensitive. Since hCP is a major copper transport protein, oxidative damage of hCP by SAL may induce perturbation of the copper transport system, which subsequently leads to deleterious conditions in cells. This study of the mechanism by which ceruloplasmin is modified by salsolinol may provide an explanation for the deterioration of organs under neurodegenerative disorders such as PD. [BMB Reports 2016; 49(1): 45-50]

Determination of Recombinant Human Epidermal Growth factor (rhEGF) in a Pharmaceutical Formulation by High Performance Liquid Chromatography with Electrochemical Detection

  • Lee, Kang-Woo;Hwang, Kyung-Hwa;Kim, Chang-Soo;Han, Kun;Chung, Youn-Bok;Park, Jeong-Sook;Lee, Yong-Moon;Moon, Dong-Cheul
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.355-359
    • /
    • 2001
  • A novel HPLC method with electrochemical detection has been developed for the determination of recombinant human epidermal growth factor (rhEGF) in pharmaceutical products. rhEGF was separated from other components in formulation on a reversed-phase C18 column with 24% acetonitrile in 0.1 M phosphate buffer (pH 4.75). The optimum electrochemical oxidation of EGF was obtained at 0.85 V vs. Ag/AgCl in a glassy carbon working electrode due to electroactive tyrosine, tryptophan, methionine, and arginine residues. The quantitation range was from 1.0 to 200 ng of rhEGF with the linear correlation coefficient greater than 0.999. The method was successfully applied for the quantitation of rhEGF in a pharmaceutical preparation.

  • PDF

Reaction Stability of the Recombinant Tyrosinase-CNK Originating from the Psychrophilic Marine Microorganism Candidatus Nitrosopumilus Koreensis (호냉성 균주 유래 재조합 티로시나아제 효소, tyrosinase-CNK의 반응 안정성 연구)

  • Choi, Yoo Rae;Do, Hyunsu;Jeong, Dawon;Park, Junetae;Choi, Yoo Seong
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • Tyrosinases catalyze the hydroxylation of a monophenol (monophenolase activity) and the conversion of an o-diphenol to o-quinone (diphenolase activity), which are mainly involved in the modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (DOPA) and DOPA/DOPAquinone-derived intermolecular cross-linking. Previously, we obtained a slightly acidic and cold-active tyrosinase, tyrosinase-CNK, by our recombinant protein approach. The enzyme showed optimal activity at pH 6.0 and 20 ℃ with an abnormally high monophenolase/diphenolase activity ratio and still had approximately 50% activity compared with the highest activity even in ice water. Here, we investigated reaction stability of the recombinant tyrosinase-CNK as a psychrophilic enzyme. The enzyme showed remarkable thermal stability at 0 ℃ and the activity was well conserved in repeated freeze-thaw cycles. Although water-miscible organic solvent as reaction media caused the activity decrease of tyrosinase-CNK as expected, the enzyme activity was not additionally decreased with increased concentration in organic solvents such as ethanol and acetonitrile. Also, the enzyme showed high salt tolerance in chaotropic salts. It was remarkably considered that 2+ metal ions might inhibit the incorporation of Cu2+ into the active site. We expect that these results could be used to design tyrosinase-mediated enzymatic reaction at low temperature for the production of catechols through minimizing unwanted self-oxidation and enzyme inactivation.

Terminal Protein-specific scFv Production by Phage Display (Phage Display 방법을 이용한 B형 간염 바이러스의 Terminal Protein 특이 scFv 항체 생산)

  • Lee, Myung-Shin;Kwon, Myung-Hee;Park, Sun;Shin, Ho-Joon;Kim, Hyung-Il
    • IMMUNE NETWORK
    • /
    • v.3 no.2
    • /
    • pp.126-135
    • /
    • 2003
  • Background: One of the important factors in the prognosis of chronic hepatitis B patient is the degree of replication of hepatitis B virus (HBV). It has been known that HBV DNA polymerase plays the essential role in the replication of HBV. HBV DNA polymerase is composed of four domains, TP (Terminal protein), spacer, RT (Reverse transcriptase) and RNaseH. Among these domains, tyrosine, the $65^{th}$ residue of TP is an important residue in protein-priming reaction that initiates reverse transcription. If monoclonal antibody that recognizes around tyrosine residue were selected, it could be applied to further study of HBV replication. Methods: To produce TP-specific scFv (single-chain Fv) by phage display, mice were immunized using synthetic TP-peptide contains $57{\sim}80^{th}$ amino acid residues of TP domain. After isolation of mRNA of heavy-variable region ($V_H$) and light-chain variable region ($V_L$) from the spleen of the immunized mouse, DNA of $V_H$ and $V_L$ were obtained by RT-PCR and joined by a DNA linker encoding peptide (Gly4Ser)3 as a scFv DNA fragments. ScFv DNA fragments were cloned into a phagemid vector. scFv was expressed in E.coli TG1 as a fusion protein with E tag and phage gIII. To select the scFv that has specific affinity to TP-peptide from the phage-antibody library, we used two cycles of panning and colony lift assay. Results: The TP-peptide-specific scFv was isolated by selection process using TP-peptide as an antigen. Selected scFv had 30 kDa of protein size and its nucleotide sequences were analyzed. Indirect- and competitive-ELISA revealed that the selected scFv specifically recognized both TP-peptide and the HBV DNA polymerase. Conclusion: The scFv that recognizes the TP domain of the HBV DNA polymerase was isolated by phage display.

Characterization of Erythritol 4-Phosphate Dehydrogenase from Penicillium sp. KJ81 (Penicillium sp. KJ81이 생산하는 Erythritol 4-Phosphate Dehydrogenase의 특성)

  • Yun, Na-Rae;Park, Sang-Hee;Lim, Jai-Yun
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.200-207
    • /
    • 2009
  • In this study, the characterization of purified erythritol 4-phosphate dehydrogenase, key enzyme of erythritol biosynthesis, produced by Penicillium sp. KJ81 was investigated. Optimum production conditions of erythritol 4-phosphate dehydrogenase was 1 vvm areration, 200 rpm agitation, at $37^{\circ}C$ for 8 days in the medium containing 30% sucrose, 0.5% yeast extract, 0.5% $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, and 0.05%$MgCl_2$. Erythritol 4-phosphate dehydrogenase was purified through ultrafiltration and preparative gel electrophoresis from cell extract of Penicillium sp. KJ81. This enzyme was especially active on erythrose 4-phosphate with 1.07 mM of Km value. It gave a single band on native polyacrylamide gel electrophoresis and an isoelectric point of 4.6. The enzyme had an optimal activity at pH 7.0 and $30^{\circ}C$. It was stable between pH 4.0 and 9.0, and also below $30^{\circ}C$. The enzyme activity was completely inhibited by 1mM $Cu^{2+}$ and 1 mM $Zn^{2+}$, but was not significantly affected by other cations tested. This enzyme was inactivated by treatment of tyrosine specific reagent, iodine and tryptophan specific reagent, N-bromosuccinimide. The substrate of the enzyme, erythrose 4-phosphate showed protective effect on the inactivation of the enzyme by both reagents. These results suggest that tryptophan and tyrosine residues are probably located at or near active site of the enzyme.

A study on the Active Site of Cytidine Deaminase from Bacillus subtilis ED 213 by Chemical Modification (화학적수식에 의한 Bacillus subtilis ED 213 Cytidine Deaminase의 활성부위에 관한 연구)

  • Park, Jung-Moon;Park, Sang-Won;Suh, Tae-Soo;Kim, Jung;Yu, Tae-Shick
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.133-138
    • /
    • 1999
  • Essential amino acids involving in the active site ofthe cytidn~e deruninase from Bncillus subtilis ED 213 were determined by chemical modification studies. Tllc purified cytidine deruninase tiom Booillus subtilis ED 213 required the reduced form of Fe(lI)ion. since the enzyme was inhibited 43% by 1 mnM o-phenanthroline. Whereas the enzyme activity was activated up to 28% by 1 1 ethylenediaminetetraacetic acid. The cytidine deaninase activily was completely inhibited by 1 mM N-bromosuccinimide, chloramine-T, and p-chloromercuribenzoic acid (p-CMB), respectively. The enzyme activity was inhibited 36% by 1 mM pyridoxal-S-phosphale, and 31% by 1 mM l-ethy~-3-(3-dirneIhj~laminoprop}~~)c~bodiiamide and glycine inethyl ester. The enzyme activity was strongly inhibited 68% by 1 \mu$M \rho$-CMB and this inhibition of the enzyme activity with 1 \mu$M \rho$-CMB was completely reactivated by 5 mM cysleine as a reducing agent. We speculaled that tyrosine, methionine, cysteuie and/or serine residues are located ui or near ihe active site of the cytidine deruniuase from Bncilus subrilis ED 213 and indirectly related to lysine and/or glycine.

  • PDF

Crystal Structure of an Activity-enhancing Mutant of DUSP19 (효소활성 증가 돌연변이를 함유한 DUSP19의 결정구조)

  • Ju, Da Gyung;Jeon, Tae Jin;Ryu, Seong Eon
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1140-1146
    • /
    • 2018
  • Dual-specificity phosphatases (DUSPs) play a role in cell growth and differentiation by modulating mitogen-activated protein kinases. DUSPs are considered targets for drugs against cancers, diabetes, immune diseases, and neuronal diseases. Part of the DUSP family, DUSP19 modulates c-Jun N-terminal kinase activity and is involved in osteoarthritis pathogenesis. Here, we report screening of cavity-creating mutants and the crystal structure of a cavity-creating L75A mutant of DUSP19 which has significantly enhanced enzyme activity in comparison to the wild-type protein. The crystal structure reveals a well-formed cavity due to the absent Leu75 side chain and a rotation of the active site-bound sulfate ion. Despite the cavity creation, residues surrounding the cavity did not rearrange significantly. Instead, a tightened hydrophobic interaction by a remote tryptophan residue was observed, indicating that the protein folding of the L75A mutant is stabilized by global folding energy minimization, not by local rearrangements in the cavity region. Conformation of the rotated active site sulfate ion resembles that of the phosphor-tyrosine substrate, indicating that cavity creation induces an optimal active site conformation. The activity enhancement by an internal cavity and its structural information provide insight on allosteric modulation of DUSP19 activity and development of therapeutics.

Protein Tyrosine Phosphatase N1 Gene Variants Associated with Type 2 Diabetes Mellitus and Its Related Phenotypes in the Korean Population

  • Hong, Kyung-Won;Jin, Hyun-Seok;Lim, Ji-Eun;Ryu, Ha-Jung;Ahn, Youn-Jhin;Lee, Jong-Young;Han, Bok-Ghee;Shin, Hyoung-Doo;Cho, Nam-Han;Shin, Chol;Woo, Jeong-Taek;Park, Hun-Kuk;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.99-109
    • /
    • 2008
  • Protein phosphorylation at tyrosine residues is a key regulatory event that modulates insulin signal transduction. We studied the PTPN1 gene with regard to susceptibility to Korean type 2 diabetes mellitus (T2DM) and its related quantitative traits. A total of seven SNPs [g.36171G>A (rs941798), g.58166G>A (rs3787343), g.58208A>G (rs2909270), g.64840C>T (rs754118), g.69560C>G (rs6020612), g.69866G>A (rs718050), and g.69934T>G (rs3787343)] were selected based on frequency (>0.05), linkage disequilibrium (LD) status, and haplotype tagging status. We studied the seven SNPs in 483 unrelated patients with type 2 diabetes (age: $64{\pm}2.8$ years, onset age: $56{\pm}8.1$ years; 206 men, 277 women) and 1138 nondiabetic control subjects (age: $64{\pm}2.9$; 516 men, 622 women). The SNP rs941798 had protective effects against T2DM with an odds ratio of 0.726 (C.I. $0.541{\sim}0.975$) and p-value=0.034, but none of the remaining six SNPs was associated with T2DM. Also, rs941798 was associated with blood pressure, HDL cholesterol, insulin sensitivity. rs941798 also has been associated with T2DM in previous reports of Caucasian-American and Hispanic-American populations. This is the first report that shows an association between PTPN1 and T2DM in the Korean as well as Asian population.

A Study on the Characteristics of Humic Materials Extracted from Decomposing Plant Residues -III. Amino Acids in the Acid Hydrolysates of Humic Acids Extracted from Straw of Rice and Barley (식물성(植物性) 유기질(有機質)의 부숙과정중(腐熟過程中) 부식특성(腐植特性)에 관(關)한 연구(硏究) -III. 볏짚과 보리짚부식산(腐植酸)의 산가수분해(酸加水分解) 용액중(溶液中) Amino 산(酸)의 함량(含量))

  • Kim, Jeong-Je;Lee, Wi-Young;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.301-306
    • /
    • 1988
  • Contents and distribution of amino acids in the hydrolysates of humic acids extracted from straw of rice and barley at three different dates during decomposition were examined. The results obtained from this study may be summed up as the following: 1. There are differences between the humic acid hydrolysates from rice straw and barley straw in regards of composition of humic acids and distribution of amino acids. 2. Neutral amino acids as a group occupy the largest share, followed by acidic amino acids and basic amino acids. 3. The total amount of amino acids per gram of humic acid is greater in straw of rice than in straw of barley. 4. With the humification progressing the content of lysine increases, but the content of histidine decreases. In general glycine, glutamic acid, aspartic acid, alanine and leucine constitute the 5 predominant amino acids in all hydrolysates. 5. Arginine is not detected at all in any of the hydrolysates of humic acids obtained from humified materials. 6. The presence of phenylalanine and tyrosine is an evidence for the aromatic characteristics of humic acids.

  • PDF

Isolation and Characterization of Mouse Testis Specific Serine/Threonine Kinase 5 Possessing Four Alternatively Spliced Variants

  • Wei, Youheng;Fu, Guolong;Hu, Hairong;Lin, Gang;Yang, Jingchun;Guo, Jinhu;Zhu, Qiquan;Yu, Long
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.749-756
    • /
    • 2007
  • Phosphorylation on serine/threonine or tyrosine residues of target proteins is an essential and significant regulatory mechanism in signal transduction during many cellular and life processes, including spermatogenesis, oogenesis and fertilization. In the present work, we reported the isolation and characterization of mouse testis-specific serine/threonine kinase 5 (Tssk5), which contains four alternatively spliced variants including, Tssk5$\alpha$, Tssk5$\beta$, Tssk5$\gamma$ and Tssk5$\delta$. Moreover, the locus of Tssk5 is on chromosome 14qC3 and the four variants had a similar high expression in the testis and the heart; however, had a low expression in other tissues, except for Tssk5$\alpha$ which also had comparably high expression in the spleen. Each variant of Tssk5 expression began in the testis 16 days after birth. Aside from TSSK5$\alpha$, the other isoforms have an insertion of ten amino acid residues (RLTPSLSAAG) in region VIb (HRD domain) (His-Arg-Asp). Moreover, only TSSK5$\alpha$ exhibited kinase activity and consistently, a further Luciferase Reporter Assay demonstrated that TSSK5$\beta$, TSSK5$\gamma$ and TSSK5$\delta$ cannot be stimulated at the CREB/CRE responsive pathway in comparison to TSSK5$\alpha$. These findings suggest that TSSK5$\beta$, TSSK5$\gamma$, TSSK5$\delta$ may be pseudokinases due to the insertion, which may damage the structure responsible for active kinase activity. Pull-down assay experiments indicated that TSSK5$\beta$, TSSK5 $\gamma$ and TSSK5$\delta$ can directly interact with TSSK5$\alpha$. In summary, these four isoforms with similar expression patterns may be involved in spermatogenesis through a coordinative way in testis.