• Title/Summary/Keyword: Tyrosinase inhibition activity

Search Result 618, Processing Time 0.021 seconds

Inhibition of Aqueous Extract from Amomum xanthioides on ${\alpha}$-melnocyte Stimulating Hormone Induced Melanogenesis in B16F10 Cell (사인의 열수 추출물이 B16F10 흑색종세포의 멜라닌형성에 미치는 영향)

  • Lee, Soo-Jin;Ye, Jeong-Sook;Choi, Yung-Hyun;Lee, Yong-Tae;Chung, Kyung-Tae;Jeong, Seong-Yun;Choi, Byung-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.50-53
    • /
    • 2007
  • To develope skin-whitening or therapeutic agents against hyperpigmentation, aqueous extract from Amomum xanthioides (AEAX) was evaluated for melanogenesis inhibitory activity in B16F10 melanoma cell. The treatment with AEAX at the 0.5 and 1.0 mg/ml level significantly inhibits the biosynthesis of melanin compared with untreated control. The AEAX-treated cells at the 1.0 mg/ml level were more efficient than commercial arbutin at 0.1 mg/ml. The tyrosinase activity also significantly decreased in AEAX-treated cells at the 0.5 and 1.0 mg/ml level. The Western analyses confirmed the significantly decreased expression of tyrosinase and tyrosinase-related protein-1 by AEAX treatment. These results indicate that AEAX may contribute to the inhibition of melanin biosynthesis through regulating tyrosinase activity and expression and serve as a new candidate in the design of new skin-whitening or therapeutic agents.

Whitening Effect of Fagopyrum tataricum Extract (쓴메밀 추출물의 미백 개선 효과)

  • Han, Na Kyeong;Park, Chang Min;Kwon, Ju Chan;Joung, Min Seok;Choi, Jong Wan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.179-186
    • /
    • 2014
  • This study was performed to DPPH radical scavenging activity, ABTS radical scavenging activity, tyrosinase inhibition activity and intracellular melanin synthesis inhibition to verify the whitening effect of Fagopyrum tataricum (bitter buckwheat) extract as contrasted with Fagopyrum esculentum (sweet buckwheat) extract. F. tataricum extract in consequence showed higher antioxidant activities, tyrosinase inhibition activity and melanin synthesis inhibition compared with F. esculentum extract. We investigated skin bright value during 8 weeks after induction of pigmentation in human skin from UV irradiation. In result, we obtained statistically a significant skin whitening effect from visual and mechanical evaluation. Accordingly, F. tataricum extract is expected to be high availability as functional cosmetic material for skin whitening.

Antioxidant and Whitening Effects of Agrimonia pilosa Ledeb Water Extract (짚신나물 물 추출물의 항산화 활성 및 미백효과에 관한 연구)

  • Kim, Tae-Hyuk;Kim, Jeong-Mi;Baek, Jong-Mi;Kim, Tae-Woo;Kim, Dae-Jung;Park, Jeong-Hae;Choe, Myeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.177-184
    • /
    • 2011
  • This study was performed to assess the antioxidant activities and whitening effects of Agrimonia pilosa Ledeb on melanin synthesis. The whitening effects of Agrimonia pilosa Ledeb water extracts were examined by in vitro mushroom tyrosinase assay and B16BL6 melanoma cells. We assessed inhibitory effect of Agrimonia pilosa Ledeb water extract on expression of melanogenic enzyme proteins including tyrosinase, tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-2) in B16BL6 cells. Inhibitory effect of Agrimonia pilosa Ledeb onto free radical generation was determined by measuring DPPH and hydroxyl radical scavenging activitie. Our results indicated that Agrimonia pilosa Ledeb water extract effectively inhibited free radical generation. In DPPH and hydroxy radical scavenging activity, Agrimonia pilosa Ledeb water extract had a potent anti-oxidant activity in a dose-dependent manner. They significantly inhibited tyrosinase activity in vitro and in B16BL6 melanoma cells. Also, Agrimonia pilosa Ledeb suppressed the expression of tyrosinase in B16BL6 melanoma cells. These results show that Agrimonia pilosa Ledeb inhibited melanin production on the melanogenesis. The underlying mechanism of Agrimonia pilosa Ledeb on whitening activity may be due to the inhibition of tyrosinase activity. We suggest that Agrimonia pilosa Ledeb may be useful as new natural active ingredients for antioxidant and whitening cosmetics.

The Inhibitory Effects of Nelumbo nucifera Gaertner Extract on Melanogenesis (연자육 추출물의 멜라닌 합성 저해효과)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Yoon, Kyung-Sup
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.137-145
    • /
    • 2013
  • In order to develop new skin whitening agents, we prepared the $CH_2Cl_2$ layer (NGC) and BuOH layer (NGB) of 75% EtOH extract of the Nelumbinis nucifera Gaertner. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, NGC and NGB suppressed melanin production up to 52% and 46% at a concentration of $100{\mu}g/mL$, respectively. To elucidate the mechanism of the inhibitory effects of NGC and NGB on melanogenesis, we measured the expression of melanogenesis-related proteins by western blot assay. As a result, NGC suppressed the expression of tyrosinase, tyrosinase related protein 1 (TRP-1), tyrosinase related protein 2 (TRP-2), phosphorylated cAMP responsive element binding (p-CREB) protein, and microphthalmia associated transcription factor (MITF). And NGB inhibited the protein expression of tyrosinase and MITF, but had no significant effect on TRP-1, TRP-2, and p-CREB expression. Moreover, NGB increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). In addition, we examined the inhibitory effect on the glycosylation of tyrosinase. As a result, NGC and NGB inhibited the activity of ${\alpha}$-glucosidase in vitro and the glycosylation of tyrosinase in B16-F1 melanoma cells. From these results, we concluded that NGC and NGB could be used as active ingredients for skin whitening.

Comparison of Physiological Activities of Radish Bud (Raphanus sativus L.) according to Extraction Solvent and Sprouting Period (추출용매 및 발아시기에 따른 무순 추출물의 생리활성 비교)

  • Han, Jin-Hee;Moon, Hye-Kyung;Chung, Shin-Kyo;Kang, Woo-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.549-556
    • /
    • 2015
  • This study extracted radish bud (Raphanus sativus L.) and investigated its nitrite scavenging activity, superoxide dismutases (SOD)-like activity, tyrosinase inhibition activity, xanthine oxidase inhibition activity, and angiotensin-converting-enzyme (ACE) inhibition activity according to extraction solvent and sprouting period. For nitrite scavenging activity, each extract recorded its highest level of 81.44~89.71% at pH 1.2. Radish bud extracts on sprouting days 4 and 8 showed greater scavenging activities than those on sprouting day 12 at pH 1.2 and pH 4.0. There were differences in scavenging activity according to extraction solvent based on water extract exhibiting improved scavenging activity. Ethanol extract recorded scavenging activity of 16.12% at pH 6.0, which was similar to those of ethanol and methanol radish bud extracts on sprouting day 12. SOD-like activity of radish bud extracts was in the range of 4.57~27.05%. For comparison purposes, SOD-like activity of L-ascorbic acid was 52.15%, which was higher than that of radish bud extracts. Acetone and methanol extracts showed high SOD-like activities on sprouting day 8. SOD-like activity of radish bud extracts on sprouting day 12 significantly decreased to 4.57~15.59%. Radish bud extracts recorded good tyrosinase inhibitory activities on sprouting 8 and 12, whereas methanol extracts recorded the greatest tyrosinase inhibitory activity at 62.65~84.89%. Radish bud extracts recorded xanthine oxidase inhibition activity of 21.26~29.52% on sprouting day 4, and acetone extracts showed the highest level of xanthine oxidase inhibition activity. Xanthine oxidase inhibitory activity tended to decrease with sprouting period compared early on. ACE inhibitory activity was in the range of 12.48~51.78% according to sprouting period and extraction solvent. Ethanol extracts on sprouting day 8 showed the highest ACE inhibitory activity of 51.78%. These results will hopefully contribute to research into the identification of materials and development of products for natural functional foods.

Antioxidant and Tyrosinase Inhibition Activity Promoting Effects of Perilla by the Light Emitting Plasma (발광플라즈마 처리에 의한 들깨 부위별 항산화 및 Tyrosinase 저해 활성 효과)

  • Yoo, Ji Hye;Choi, Jae Hoo;Kang, Byeong Ju;Jeon, Mi Ran;Lee, Chan Ok;Kim, Chang Heum;Seong, Eun Soo;Heo, Kweon;Yu, Chang Yeon;Choi, Seon Kang
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Background: The light emitting plasma (LEP) has recently attracted attention as a novel artificial light source for plant growth and functional component enhancement. We investigated the effects of LEP on whitening and antioxidant activities of the plant parts of perilla. Methods and Results: Previously germianted seeds of perilla were cultivated under different light conditions (fluoresce lamp, LED red, blue, white, green, and LEP) in a culture room for 2 months. Parts of perilla were harvested and extracted in 70% EtOH. The extracts were used to detect total phenolic contents, total flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power and tyrosinase inhibition activity as indicators of biological activity. Biological activity was highest in seedlings grown under LEP. The total phenolic content was highest in the stems and the total flavonoid content was highest in the roots of perilla exposed to LEP. The DPPH and ABTS radical activity in all the parts of perilla exposed to LEP were higher by approximately three-fold compared to that in the control (fluoresce lamp). The reducing power values of perilla significantly increased after treatment with LEP. In addition, all the extract of perilla plants exposed to LEP promoted the tyrosinase inhibitory activity. These results suggest that LEP can be an important artificial light source for enhancement of biological activity. Conclusions: LEP could promote whitening and antioxidant activity of perilla.

Biological Activity and Chemical Characteristics of Cordyceps militaris Powder Fermented by Several Microscopic Organisms (발효 동충하초의 유용성분 및 생리 활성 작용)

  • Ahn, Hee-Young;Park, Kyu-Rim;Yoon, Kyoung-Hoon;Lee, Jae-Yun;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.197-205
    • /
    • 2015
  • The comparative effects of the fibrinolytic action, antioxidative activity, and tyrosinase inhibition of Cordyceps militaris powder and fermented Cordyceps militaris powders were investigated using several microscopic organisms. The nutritional components such as phenolic compounds, flavonoids, and minerals were also measured. The total phenolic compounds and flavonoid concentrations were highest in the Cordyceps militaris powder fermented by Aspergillus oryzae. Major minerals were K, Ca, Mg, and Zn. Native polyacrylamide gel electrophoresis (native-PAGE) analysis of the total protein patterns of Cordyceps militaris powder and fermented Cordyceps militaris powders revealed slight varietal differences. Fibrinolytic activity was highest in the Cordyceps militaris powder fermented by Bacillus subtilis and Aspergillus kawachii. The DPPH radical scavenging activity was slightly stronger in the powder fermented by Monascus purpureus; however, these samples all exhibited a relatively low activity when compared with butylated hydroxytoluene (BHT). Tyrosinase inhibition activity was stronger in the powder fermented by Aspergillus oryzae than in unfermented powder. These results may provide basic data for understanding the biological activities and chemical characteristics of Cordyceps militaris powder fermented by several microscopic organisms for the development of functional foods.

The Effects of Soybean Protopectinase on Melanin Biosynthesis (효소(Protopectinase) 처리한 대두가 세포내 멜라닌 생성에 미치는 영향)

  • Yoo, Jin-Kyoun;Lee, Jin-Hee;Cho, Hyung-Yong;Kim, Jung-Gook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.355-362
    • /
    • 2013
  • This study was performed to assess the antioxidant activities and whitening effects of protopectinase enzymes and mechanical maceration from soybeans on melanin synthesis. The whitening effects of enzyme treatment and mechanical maceration were examined by an in vitro mushroom tyrosinase assay and by assessing markers in B16BL6 melanoma cells. We assessed inhibitory effects on the expression of melanogenic enzymes, including tyrosinase, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) in B16BL6 cells. Inhibitory effects on free radical generation were determined by measuring DPPH and hydroxyl radical scavenging activities. In DPPH radical scavenging activity, enzyme treatment and mechanical maceration had a potent anti-oxidant activity in a dose-dependent manner and significantly inhibited tyrosinase activity in vitro and in B16BL6 melanoma cells. There was also an inhibition in the expression of tyrosinase, TRP-1, and TRP-2 in B16BL6 melanoma cells. Our results show that soybean protopectinase treatment inhibits melanogenesis, with the underlying mechanism possibly due to the inhibition of tyrosinase activity and tyrosinase, TRP-1, and TRP-2 expression. We suggest that soybean protopectinase should be contained as natural active ingredients for antioxidant and whitening cosmetics.

Effect of Hovenia dulcis Thunb. Ethanol Extract on the Melanogenesis in B16F10 Melanoma Cell (지구자(枳椇子)에탄올추출물이 B16F10흑색종세포의 멜라닌생성에 대한 효과)

  • Kim, Jun-Ho;Moon, Dea-Won;Choi, Mi-Eun;Lim, Gyu-Sang;Mun, Yeun-Ja;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.337-342
    • /
    • 2009
  • Acquired pigmentary skin diseases such as abnormal melanogenesis, vitiligo, chloasma and inflammatory pigmentation are related to regulate the melanin production, In this study, an ethanol extract of Hovenia dulcis Thunb.(EHD) makedly inhibited melanin biosynthesis and suppressed, the protein expression of tyrosinase, tyrosinase-related protein 1(TRP-1), and tyrosinase-related protein 2(TRP-2) in B16F10 cells. On the other hand, EHD did not inhibit mushroom tyrosinase activity. These results indicate that EHD may contribute to the inhibition of melanin biosynthesis through regulating tyrosinase activity and expression, and serve as a new candidate in the design of new skin-whitening or therapeutic agents.

A Study on the Melanin Synthesis Inhibition and Whitening Effect of Bombysis Corpus (백강잠의 멜라닌 생성 억제와 미백효과에 관한 연구)

  • Oh, Han-Cheol;Lim, Kyu-Sang;Hwang, Chung-Yeon;Youn, In-Hwan;Kim, Nam-Kwen
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.3
    • /
    • pp.1-13
    • /
    • 2007
  • Objective : This study was performed to assess the whitening effect of Bombysis Corpus on melanin synthesis. Methods : The whitening effects of Bombysis Corpus were examined by in vitro melanin production assay. We assessed inhibitory effects of Bombysis Corpus on melanin-release from B16F10, on melanin production in B16F10, on mushroom tyrosinase activity in vitro, on tyrosinase activity in B16F10, effect of Bombysis Corpus on the expression tyrosinase, TRP-1, PKA, ERK-1 ERK-2, AKT-1, MITF in B16F10. Results : 1. Bombysis Corpus inhibited melanin-release, melanin production in B16F10. 2. Bombysis Corpus inhibited tyrosinase activity in vitro and in B16F10. 3. Bombysis Corpus suppressed the expression of tyrosinase, TRP-1 in B16F10. 4. Bombysis Corpus suppressed the expression of PKA in B16F10. 5. Bombysis Corpus suppressed the expression of ERK-1, ERK-2, AKT-1 in B16F10. 6. Bombysis Corpus suppressed the expression of MITF in B16F10. Conclusion : The study shows that Bombysis Corpus inhibited melanin production on the melanogenesis.

  • PDF