• 제목/요약/키워드: Typical meteorological year weather data

검색결과 15건 처리시간 0.022초

평균년 표준기상데이터를 이용한 평판형 태양열 집열기 설치각 산정에 관한 연구 (A Study on the Setting Angle for the Flat-Plate Solar Collector' using Typical Meteorological Year Weather Data)

  • 최정민
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1084-1091
    • /
    • 2002
  • In general, flat-plate solar collectors are generally fixed in place at some angles. The most common method is to orient solar collectors toward the true south, where variations up to 15 degrees east or west are acceptable and the tiIt angle of the collectors is calculated from latitude and different heating applications. However, the best angle of flat-plate collectors depends upon whether the dominant load occurs in the winter, summer, or evenly all year. Moreover, this setting angle must consider the average insolation characteristics of the region exactly. In this study, the setting angle of flat-plate solar collectors is presented for Busan area by using domestic typical meteorological year weather data, so that the fixed flat-plate solar collectors must be set as quantitatively as possible.

태양광 패널 일사량에 기반한 대표연도 데이터 비교 평가 (Comparative Assessment of Typical Year Dataset based on POA Irradiance)

  • 윤창열;김보영;김창기;김현구;강용혁;김용일
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.102-109
    • /
    • 2024
  • The Typical Meteorological Year (TMY) dataset compiles 12 months of data that best represent long-term climate patterns, focusing on global horizontal irradiance and other weather-related variables. However, the irradiance measured on the plane of the array (POA) shows certain distinct distribution characteristics compared with the irradiance in the TMY dataset, and this may introduce some biases. Our research recalculated POA irradiance using both the Isotropic and DIRINT models, generating an updated dataset that was tailored to POA characteristics. Our analysis showed a 28% change in the selection of typical meteorological months, an 8% increase in average irradiance, and a 40% reduction in the range of irradiance values, thus indicating a significant shift in irradiance distribution patterns. This research aims to inform stakeholders about accurate use of TMY datasets in potential decision-making. These findings underscore the necessity of creating a typical dataset by using the time series of POA irradiance, which represents the orientation in which PV panels will be deployed.

한반도 바람자원의 TMY(typical meteorological year)구축 알고리즘에 관한 연구 (A Study on an Algorithm for Typical Meteorological Year Generation for Wind Resource of the Korean Peninsula)

  • 김혜중;정선;최영진;김규랑;정영림
    • 응용통계연구
    • /
    • 제22권5호
    • /
    • pp.943-960
    • /
    • 2009
  • 본 연구는 한반도 바람자원 TMY(typical meteorological year)의 구축에 적절한 알고리즘을 제안하고, 이를 전국 77개 기상관측소에서 1998년~2008년 기간 동안 관측한 바람자료에 적용하여 TMY를 구축하였다. 제안된 알고리즘은 Filkenstein-Shafer(FS) 통계모형 하에서 정의된 다양한 통계를 사용하여 연/원별 바람자료의 설명력 측도인 TMM(typical meteorological month)점수를 구하고, TMM점수에 기준하여 TMY를 구축하는 절차이다. 알고리즘은 두 단계 계산알고리즘으로 구성되었으며, 첫 단계는 각 관측소의 바람개황 그리고 둘째 단계는 한반도의 바람개황을 대표하는 TMY가 되도록 설계하였다. 11년 바람자료와의 비교분석, 경쟁모형에 의해 구축된 TRY(typical reference year)들과의 비교, 기상요소 추가에 따른 TMY의 영향평가 등 여러 종류의 비교 및 평가를 통하여 한반도 바람자원의 개황에 대한 TMY의 대표성과 효용성을 보였다.

신재생에너지 국가참조표준 시스템 구축 및 개발 - 모델 기반 표준기상년 (System Construction and Data Development of National Standard Reference for Renewable Energy - Model-Based Standard Meteorological Year)

  • 김보영;김창기;윤창열;김현구;강용혁
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.95-101
    • /
    • 2024
  • Since 1990, the Renewable Big Data Research Lab at the Korea Institute of Energy Technology has been observing solar radiation at 16 sites across South Korea. Serving as the National Reference Standard Data Center for Renewable Energy since 2012, it produces essential data for the sector. By 2020, it standardized meteorological year data from 22 sites. Despite user demand for data from approximately 260 sites, equivalent to South Korea's municipalities, this need exceeds the capability of measurement-based data. In response, our team developed a method to derive solar radiation data from satellite images, covering South Korea in 400,000 grids of 500 m × 500 m each. Utilizing satellite-derived data and ERA5-Land reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), we produced standard meteorological year data for 1,000 sites. Our research also focused on data measurement traceability and uncertainty estimation, ensuring the reliability of our model data and the traceability of existing measurement-based data.

1985년부터 2014년까지의 측정 수평면전일사량과 기상데이터 간의 경향 및 상관성 분석 (Analysis of Trends and Correlations between Measured Horizontal Surface Insolation and Weather Data from 1985 to 2014)

  • 김정배
    • 융복합기술연구소 논문집
    • /
    • 제9권1호
    • /
    • pp.31-36
    • /
    • 2019
  • After 30 years of KKP model analysis and extended 30 years of accuracy analysis, the unique correlation and various problems between measured horizontal surface insolation and measured weather data are found in this paper. The KKP model's 10yrs daily total horizontal surface insolation forecasting was averaged about 97.7% on average, and the forecasting accuracy at peak times per day was about 92.1%, which is highly applicable regardless of location and weather conditions nationwide. The daily total solar radiation forecasting accuracy of the modified KKP cloud model was 98.9%, similar to the KKP model, and 93.0% of the forecasting accuracy at the peak time per day. And the results of evaluating the accuracy of calculation for 30 years of KKP model were cloud model 107.6% and cloud model 95.1%. During the accuracy analysis evaluation, this study found that inaccuracies in measurement data of cloud cover should be clearly assessed by the Meteorological Administration.

기상조건, 방위각 및 경사각에 따른 태양광발전시스템 출력 분석 (PV System Output Analysis Based on Weather Conditions, Azimuth, and Tilt Angle)

  • 이상혁;권오현;이경수
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.38-42
    • /
    • 2017
  • PV system output is determined according to the weather conditions, the azimuth and tilt angle. Weather conditions are changing every moment and it seems to vary according to the daily, monthly, and annual basis. The azimuth and tilt angle is decided along the site conditions for the PV system installation. This paper analyzed the PV system output through the changing the weather conditions, the azimuth, and tilt angle. We compared the TMY data and analysis of the two major weather institutes which are KMA and METEONORM. PV system output trend were analyzed by changing the azimuth and tilt angle. We used simulation tool, which is named PVsyst for the entire PV system analysis.

기상조건에 따른 부산지역 대기오염물질 농도변화와 예측에 관한 연구 (On the Prediction and Variation of Air Pollutants Concentration in Relation to the Meteorological Condition in Pusan Area)

  • 정영진;이동인
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.177-190
    • /
    • 1998
  • The concentrations of air pollutants In large cities such as Pusan area have been increased every year due to the increasing of fuels consumption at factories and by vehicles as well as the gravitation of the population. In addition to the pollution sources, time and spatial variation of air pollutants concentration and meteorological factors have a great influence on the air pollution problem. Especially , its concentration is governed by wind direction, wind speed, precipitation, solar radiation, temperature, humidity and cloud amounts, etc. In this study, we have analyzed various data of meteorological factors using typical patterns of the air pressure to investigate how the concentration of air pollutants is varied with meteorological condition. Using the relationship between meteorological factors (air temperature, relative humidity, wind speed and solar radiation) and the concentration of air pollutants (SO2, O3) , experimental prediction formulas for their concentration were obtained. Therefore, these prediction formulas at each meteorological factor in a pressure pattern may be roughly used to predict the air pollutants concentration and contributed to estimate the variation of its value according to the weather condition in Pusan city.

  • PDF

Analytical study of house wall and air temperature transients under on-off and proportional control for different wall type

  • Han, Kyu-Il
    • 수산해양기술연구
    • /
    • 제46권1호
    • /
    • pp.70-81
    • /
    • 2010
  • A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.

두개의 제어기를 사용한 건물 내부의 온도변화와 에너지소비량을 계산하기 위한 해석적 연구 (A study on the analytical method for calculating the inside air temperature transient and energy consumption load of the building using two different controllers)

  • 한규일
    • 수산해양기술연구
    • /
    • 제48권1호
    • /
    • pp.82-90
    • /
    • 2012
  • Four different buildings having various wall construction are analyzed for the effect of wall mass on the thermal performance and inside building air and wall temperature transient and also for calculating the energy consumption load. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equations is obtained using the Laplace transform method, Bromwich and modified Bromwich contour method. A simple dynamic model using steady state analysis as simplified methods is developed and results of energy consumption loads are compared with results obtained using the analytical solution. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from two different locations in Korea: Daegu having severe weather in summer and winter and Jeju having mild weather almost all year round. There is a significant wall mass effect on the thermal performance of a building in mild weather condition. Buildings of heavyweight construction with insulation show the highest comfort level in mild weather condition. A proportional controller provides the higher comfort level in comparison with buildings using on-off controller. The steady state analysis gives an accurate estimate of energy load for all types of construction. Finally, it appears that both mass and wall insulation are important factors in the thermal performance of buildings, but their relative merits should be decided in each building by a strict analysis of the building layout, weather conditions and site condition.

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • 수산해양기술연구
    • /
    • 제47권1호
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.